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Differential graded algebras have played an important role in the study of infinite

free resolutions over local commutative Noetherian rings. In particular, they have

been a mechanism to import mathematical tools, such as the homotopy Lie algebra,

from rational homotopy theory in order to study invariants of rings and growth of

resolutions. More recently, differential graded algebras and the homotopy Lie algebra

have also been employed to study infinite graded free resolutions over graded rings. In

this setting the algebras are bigraded by homological degree and the internal degree

coming from the ring of interest. Chapters 1, 2, and 3 of this work establish important

theory of bigraded differential graded algebras in great generality. In chapter 4, we

establish tools for computing the structure of these resolutions in particular internal

degrees, yielding new results about the existence of certain long exact sequences. We

then specialize to the study of N-graded rings over fields. Motivated by a conjecture

of Ferraro, in chapter 5 we prove results about the relationship between the structure

of the homotopy Lie algebra and the Koszul and complete intersection properties. In

chapter 6 We also prove variants of rigidity results which were previously known only

in the local case.
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Chapter 1

Introduction

The philosophy which began homological algebra is to use sequences of matrices

between free modules (often vector spaces), which organize together into a structure

called a chain complex, to create numerical measurements of mathematical objects.

In good cases, these measurements allow for mathematical objects to be compared

with great precision using computational tools from linear algebra. The discipline

began in topology, in which the number of “n-dimensional holes” in a topological

space is measured by the vector space dimension of the n’th piece of a chain complex

associated to the space. Homological algebra was then imported into many other areas

of mathematics, including commutative algebra [38]. When R is a local Noetherian

ring, a chain complex of particular interest is the minimal resolution of the residue

field k of R by free R-modules. The sizes of the free modules (their R-rank) in

this chain complex is a measurement of the complexity of the relations among the

generators of the ring’s maximal ideal.

Differential graded algebras further enrich the structure of a chain complex by im-

posing a multiplication rule. Again, they were first used in topology, and were later

imported to the study of local rings by John Tate [37]. Specifically, the resolution of

the residue field is inductively constructed by adjoining algebra generators in increas-

ing homological degrees. The ranks of the free modules in the resulting resolution is
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determined by the number of algebra generators by a combinatorial formula. Hence,

the introduction of an algebra structure to the resolution of k over R allows for the

growth of resolutions to be studied by counting the number of algebra generators

in each homological degree. These numbers form a family of numerical invariants

{εi(R)}i≥1 called the deviations of R.

A particularly spectacular example of how deviations can measure resolutions

is when R is a complete intersection (a quotient of a regular ring by a regular se-

quence). In this situation, the (typically infinite) data of the minimal resolution of

the residue field is entirely encoded in the finite data of the first three deviations

ε0(R), ε1(R), ε2(R). Soon after Tate introduced differential graded algebra resolu-

tions, his student Assmus proved as part of his dissertation work that the converse is

true also [2]. Namely, when the the deviations vanish in homological degrees greater

than three, R must be a complete intersection.

When R fails to be a complete intersection, the severity of this failure can be

measured by the deviations εi(R) for i ≥ 3. If many are non-zero and large in

magnitude, this indicates that R is far from being a complete intersection. In a

line of work begun by Gulliksen [23], deviations have been shown to be rigid, in the

sense that either R is a complete intersection and all higher deviations vanish, or

every single deviation must be non-zero [25], and in fact the sequence of deviations

must grow exponentially [4]. This shows that the homological behavior of complete

intersections is radically different from that of other rings.

Differential graded algebras can be used to gain even greater insight into the struc-

ture of the homological algebra over the ring R. There exists an N-graded Lie algebra

called the homotopy Lie algebra of R, denoted π∗(R), which completely determines

the structure of the Ext algebra of R. Specifically, composition of morphisms gives a
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multiplicative structure on the Ext algebra

Ext∗R(k, k) = ⊕i∈N ExtiR(k, k).

This multiplication is typically not commutative, so the (graded) commutator defines

a non-trivial bracket turning Ext∗R(k, k) into a Lie algebra. π∗(R) is a Lie subalgebra

with respect to this bracket, and Ext∗R(k, k) is the universal envelope of π∗(R). This

means that Ext∗R(k, k) is constructed from π∗(R) by imposing that its commutator

agrees with the bracket of π∗(R), and no other conditions. The deviations enumerate

the dimensions graded pieces of the homotopy Lie algebra: εi(R) = dimk π
i(R) for

each i [36].

Again, there is inspiration from topology: the homotopy Lie algebra is the ana-

logue of the rational homotopy groups π1(X), π2(X), . . . of a topological space X,

justifying the name [6]. There are strong restrictions on its structure (for example

see [20, Theorem A]) which have made it a vital tool for proving variants of rigidity

theorems such as [6, Theorem D]. Recently, the homotopy Lie algebra was employed

by Briggs to close a long-standing conjecture of Vasconcelos on the conormal module

[16, Theorem A].

More recent work has expanded the use of differential graded algebras to the study

of graded rings. Typical cases are quotients of the polynomial ring k[x1, . . . , xn]/I

over a field k, with I generated by polynomials which are homogeneous with respect

to a grading determined by an assignment of the degrees of each variable xi. Two

particularly studied cases are

• deg(xi) = ~ei is the standard basis vector of Nn, in which case homogeneous

polynomials are necessarily monomials and the Nn-graded ring R is said to be

a monomial algebra
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• deg(xi) = 1, in which case R is a standard N-graded ring.

Avramov [7] showed that certain deviations of a monomial ring R and a Lie

subalgebra of π∗(R) may be calculated using some combinatorial data of a certain

poset associated to the defining ideal I. This was expanded by Berglund [13].

Avramov and Peeva [10] showed that vanishing of certain deviations of an N-

graded ring are associated to the Koszul property, which is a duality property enjoyed

by some N-graded rings which is especially important in mathematical physics[29,

Chap. 13, 7]. Ferraro was interested in deviations of N-graded rings due to a connec-

tion to the existence of test modules for the Koszul property [21, Question 2.4], and

made a few conjectures about them (Question 3.3, Question 3.4, loc. cit.) motivated

by the results of Avramov and Peeva and the rigidity theory of Gulliksen.

A systematic treatment of differential graded algebras, deviations, and homotopy

Lie algebras for more general gradings is absent in the literature. To account for the

internal grading, we name these objects differential bigraded algebras and bigraded

homotopy Lie algebras. To them are associated a set of graded deviations εi,j(R),

where i ranges over all homological degrees, and j ranges over all internal degrees

of the gradation of R. This work begins by showing that the aforementioned results

proven for local rings hold also for many graded rings. We then discuss a number

of completely new results involving graded deviations, which we will highlight in the

following overview of the remaining chapters.

Chapter 2 defines the category of differential bigraded algebras and establishes

some technical results that will be needed later. Chapter 3 features theorem 3.1.5

and theorem 3.1.7, which establish the existence of acyclic closures and minimal

models, two algebra resolutions which are used to define the deviations, for arbitrary

graded rings. Some minimality conditions are defined, which allow for these algebra
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resolutions to be detected. We also describe a procedure for minimizing differential

bigraded algebras, which is an essential computational tool employed heavily in chap-

ter 5. In chapter 4, we define deviations, and construct the homotopy Lie algebra in

a more restrictive case. We show that it is unique in theorem 4.3.6:

Theorem. Suppose that D is a commutative cancelative monoid that has no non-

trivial units, and let R be a D-local ring with R0 = k a field. Then π∗(R) is unique

up to isomorphism of bigraded Lie algebras.

We also discuss some how some known results on long exact sequences of homotopy

Lie algebras extend to the graded setting.

The latter part of this work is entirely new. It features a method of calculating

deviations, connections between vanishing of deviations and structural properties of

rings, and a rigidity theory for graded deviations which has consequences for other

invariants of graded rings.

chapter 5 features theorem 5.1.7, which provides a method for calculating devia-

tions using any differential bigraded algebra which satisfies certain technical condi-

tions. We state a slightly simplified version below:

Theorem. Let D be a commutative cancelative monoid and R be a D-local ring and

R0 = k a field. Let k[Y ] be a D-local semifree extension with H0(Q[Y ]) = R. Let

D ⊂ D be summand closed, and suppose H≥1(Q[Y ])D = 0 and that k[Y ] is absolutely

minimal in all degrees coming from D. Then there is a minimal model k[X] of R

such that #Xi,d = #Yi,d = εi,d(R) for all i ∈ N and d ∈ D.

Several corollaries follow for relating deviations of rings R and S connected by a

graded morphism ϕ : R→ S.

Chapter 6 studies the connection between vanishing of certain deviations and the

Koszul and complete intersection properties. Theorem 6.1.1 uses deviations to study
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the transfer of the Koszul property along a graded homomorphism. Theorem 6.2.4

provides a connection between the vanishing of “off-diagonal” deviations and a hy-

brid of the Koszul and complete intersection properties. A direct consequence is

corollary 6.2.6, which generalizes [10, Theorem 2] and answers [21, Question 3.3]:

Theorem. Let S be an N-local algebra with S0 = k, and suppose that εij(S) = 0 when

j 6= i and j ≥ 3. Then S ∼= (Q ⊗k P )/(f1, . . . , fc) with Q standard-graded Koszul,

P a polynomial ring, and f1, . . . , fc a regular sequence. If S is standard graded then

S ∼= Q/(f1, . . . , fc) with Q Koszul and f1, . . . , fn a regular sequence.

In chapter 7 we study whether the off-diagonal deviations appearing in the above

theorem exhibit rigid behavior. As with classical rigidity results, the aim is to measure

the gap in homological behavior between rings satisfying the conclusion of the prior

theorem, and rings which do not. Theorem 7.2.3 establishes a rigidity theorem for N-

graded deviations. Corollary 7.2.4 is analogous to the classical theorem of Gulliksen

[23], but only for odd homological degrees:

Theorem. Let R be an N-local algebra with R0 = k. If εij(R) = 0 for i 6= j and

i� 0, then εij(R) = 0 for i 6= j and all odd i ≥ 3.

We then apply this result to study the asymptotic properties of a numerical invari-

ant of N-graded rings called slope. Theorem 7.3.6 makes progress towards answering

a question of Conca [30, p. 9.4]:

Theorem. Let R be a graded k-algebra. Then either limslopeR(k) = slopeR(k) or the

following hold:

1. There exists an odd integer l so that slopeR(k) = (tl(k)− l)/l. In other words,

the slope is attained in some degree l.
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2. For any l satisfying (1), we have slopeR(k) > limslopeR(k) ≥ (tl(k)− l)/(l+ 1).

The above constructions have been generalized to the relative case of a morphism

ϕ : R → S of local rings which maps the maximal ideal of R into the maximal ideal

of S. Specifically, the deviations εi(ϕ) and the homotopy Lie algebra π∗(Fϕ) of ϕ

may be defined using a slightly technical construction which we outline in the graded

setting in chapter 4. The classical absolute case of the deviations and homotopy Lie

algebra of a ring is recovered by considering a presentation Q→ R̂ of the completion

of R as a quotient of a regular ring. In this work, we focus on establishing all the

aforementioned results in the relative case due to its greater generality. Our summary

above featured the absolute case to avoid excessively technical discussion.
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Chapter 2

Differential-Bigraded Algebra

Over a regular ring, the celebrated Auslander-Buchsbaum-Serre theorem states that

all free resolutions are finite. Hence, provided an algorithm exists to calculate the gen-

erators of kernels, free resolutions of any module can be precisely calculated in finite

time. The desire to understand the structure of infinite resolutions over other local

rings has led to the development of a variety of tools under the umbrella of differential

graded algebra, namely differential-graded algebra resolutions, acyclic closures, and

differential-graded Lie algebras (in particular, the homotopy Lie algebra attached to

a ring or a ring homomorphism). These tools have been used to investigate a number

of prominent homological conjectures, chief among them Quillen’s conjecture on the

vanishing of cotangent cohomology [5] and, more recently, Vascencelos’ conjecture on

the conormal model [17]. Suitable complete references for differential graded algebra

may be found in the books of Gulliksen and Levin [22] and Avramov [8].

These tools were originally developed for the study of local algebra (i.e., local

rings and local homomorphisms between them). An essential component for the

development of the theory is Nakayama’s lemma, which holds for the category of

finitely generated modules over a local ring. As a version of Nakayama’s lemma holds

for the category of graded modules over a graded ring, many homological constructions

proceed identically. Consequently, DG algebra tools have been employed for graded
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rings in various contexts (see examples [10], [13]) However, a complete independent

development in a general graded setting is unknown to the present author, so we

proceed with a self-contained treatment.

2.1 Monoid Graded Rings

We begin by establishing some notation about graded rings. To state results in their

natural level of generality, we will allow the grading to be provided by an arbitrary

commutative cancelative monoid D, written additively. In typical examples, D is N

or Nl. We will typically need to enlarge allowable gradings by passing to the group

completion.

Definition 2.1.1. Let D be a commutative cancelative monoid. The group completion

of D, denotedG(D) or justG when D is understood, is the group obtained by adjoining

a formal inverse for every non-unit of D.

In this section, R will be a commutative Noetherian ring, and will be D-graded,

the definition of which we recall below.

Definition 2.1.2. Let D be a monoid.

1. A D-graded ring R is a ring whose underlying abelian group is equipped with a

direct sum decomposition R =
⊕

d∈DRd satisfying RdRe ⊂ Rd+e for all d, e ∈ D.

2. A morphism of D-graded rings is a ring homomorphism ϕ : R → S satisfying

ϕ(Rd) ⊂ Sd for all d ∈ D (in other words, morphisms always preserve D degrees).

3. A G-graded module M is an R-module equipped with a direct sum decomposi-

tion M =
⊕

d∈GRd satisfying RdMe ⊂Md+e for all d, e ∈ G.
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4. A D-graded module is a G-graded module M further satisfying that Md = 0

whenever d /∈ D

5. A map of G-graded modules f : M → N is an R-linear map satisfying f(Md) ⊂

Nd for all d ∈ D (in other words, morphisms always preserve G degrees).

6. For d ∈ G and a G-graded R module M , the shift of M by d, denoted M(d), is

the module M(d) =
⊕

e∈GMe+d.

7. Associated to the shift is an R-linear function (d) : M → M(d) which takes

m ∈Me and reinterprets it as an element of Me+d, denoted m(d).

The structures of graded R modules and graded rings combine to form algebras.

Definition 2.1.3. A D-graded R-algebra is a D-graded ring S equipped with a D-

graded ring homomorphism from R to the center of S.

Definition 2.1.4. Let D be a (commutative, cancelative) monoid. A subset S ⊂ D

is an ideal if it is closed under the addition of D. S is summand-closed or a summand

set if s+ s′ ∈ S implies that s ∈ S and s′ ∈ S.

While we will not make use of the following fact, we include it to provide further

context for the above definition.

Proposition 2.1.5. S ⊂ D is summand-closed if and only if D \ S is an ideal.

The following example is commonly encountered:

Example 2.1.6. {0, 1}l ⊂ Nl, the set of squarefree multidegrees, is summand-closed.

Resolutions are commonly studied in the context of local rings, which allows for

the use of Nakayama’s lemma. In the graded case, there is an analogue of locality.
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Definition 2.1.7. R is a D-graded local ring or D-local if the ideal generated by

all homogeneous non-units of R is proper. In this case, the ideal generated by all

homogeneous non-units is called the irrelevant ideal of R and is denoted mR. A

morphism ϕ : R → S of D-local rings satisfies ϕ(mR) ⊆ mS. R is a D-graded field if

every homogeneous element is invertible (i.e., mR = 0 and R0 is a field).

Even in this level of generality, Nakayama’s lemma applies which allows for the

construction of minimal resolutions. Its proof may be found in [28, Theorem 3.4]

and [26, Proposition 2.30] (the latter for the case of Abelian groups, but since D is

cancelative the result may be applied to G(D)-graded modules).

Lemma 2.1.8. Let M be a finitely generated G(D)-graded module and R be a D-local

ring with irrelevant ideal m. Then,

1. mM = M implies M = 0,

2. m1, . . . ,mn generate M if and only if their images in M/mM generate M/mM ,

3. Any minimal generating set of M has the same length depending only on M .

This ensures that the following is well-defined.

Definition 2.1.9. For a finitely generated G(D)-graded R module M , the minimal

number of homogeneous generators is denoted by µ(M).

2.1.1 Presentability

For the classically-studied case of local rings (in the ordinary sense, that there is a

unique maximal ideal), morphisms ϕ : R → S must map the maximal ideal mR of R

to the maximal ideal mS of S. The famous Cohen structure theorem states that if R

is complete, it admits a presentation R ∼= Q/I with I ⊂ m2
Q and Q regular, and the
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map Q → R is one of local rings. In the equicharacteristic case, Q is a power series

ring in some number of variables.

In the relative situation, a local homomorphism ϕ : R→ S with S complete admits

a Cohen factorization, which is a commutative diagram of local rings

R′

R S
ϕ

with R′ a complete ring, R′ flat over R, and R′/(mRR
′) a regular ring. Such a

factorization is called minimal if edimR′/(mRR
′) = edimS/(mSS). Minimal Cohen

factorizations always exist when S is complete by [9, (1.1)]

In the graded setting, a natural analogue of the power series ringsQ andR′/(mRR
′)

is the polynomial ring in some number of variables. Unfortunately, this notion proves

to be more restrictive than in the local case. In other words, not all rings and homo-

morphisms admit presentations in the manner described above, as demonstrated by

the following example.

Example 2.1.10. Let R = k[t, t−1] be Z-graded with deg(t) = 1. Let R ∼= Q/I be

any presentation of R as a quotient of a polynomial ring over a field, and let x, y ∈ Q

be pre-images of t, t−1. Since the isomorphism is graded, Q must be Z-graded so that

deg(x) = 1 and deg(y) = −1. Both xy and xy − 1 are homogeneous non-units with

respect to this grading, so the ideal generated by all homogeneous non-units of Q

fails to be proper. Hence Q is not Z-local. Therefore, R can not be described as a

quotient of a D-local polynomial ring.

Consider the natural inclusion ϕ : k ↪→ R. Since mk = 0, the map k → R′ in any

factorization of ϕ as described above satisfies R′/(mkR
′) = R′. By the same argument

as in the preceding paragraph, R′ can not be a polynomial ring and be D-local. Hence
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ϕ can not be factored in a manner analogous to Cohen factorizations.

With this in mind, we introduce the following notions:

Definition 2.1.11. A D-local ring R is presentable if there exists a D-local polynomial

ring Q over a complete regular local ring Q0 so that R ∼= Q/I with I ⊂ m2
Q. A

morphism ϕ : R→ S is factorizable if there exists a commutative diagram of D-local

rings

R′

R S
ϕ

with R′ a D-local ring, R′ flat over R, and R′/(mRR
′) a polynomial ring over a regular

ring (R′/(mRR
′))0. A diagram above is called a factorization of ϕ.

Note that while it is possible that R′ in the above definition is nothing other than

R[x1, . . . , xn], it need not be. Of course, if ϕ0 : R0 → S0 is a local morphism admitting

a Cohen factorization R0 → R′0 → S in which R′0 is not a polynomial ring over R0,

then R′ will fail to decompose in such a manner. However, even when R and S are

algebras over fields, such a decomposition of R′ may fail to hold; An example of a

factorizable map in which R′ is not a polynonomial ring over R is a field extension

k → l. However, when R and S are algebras over fields, this is the only way the

decomposition can fail, meaning that we can always take R′ to be a polynomial ring

over R ⊗k l. This will be shown in proposition 2.1.17, but we first establish a few

more necessary definitions and lemmas.

Definition 2.1.12. Let R and S be D-local rings with R0 = k and S0 = l. Let

R → R′ → S be a factorization of a D-local map R → S, and suppose R′/(mRR
′) ∼=

l[x1, . . . , xn]. The factorization is standard if R′ ∼= (R⊗k l)[x1, . . . , xn].
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We can also require that presentations and factorizations are as efficient as possi-

ble, in the sense that they use the fewest variables.

Definition 2.1.13. Let R be a presentable D-local ring. Then the embedding di-

mension of R, denoted edim(R), is the minimal number of generators, µ(mR), of

the maximal ideal. A presentation Q → R is minimal if dim(Q) = edim(R). A

factorization R→ R′ → S is minimal if dimR′/(mRR
′) = edimS/(mRS).

Factorizations allow for the definitions of various singularity types of rings to be

generalized to singularity types of ring homomorphisms. We define one in particular

which is of particular importance to this work.

Definition 2.1.14. Let ϕ : R→ S be a D-local homomorphism which admits a mini-

mal standard factorization R→ R′
ϕ̃−→ S. ϕ is a complete intersection homomorphism

if a ker(ϕ̃) is minimally generated by a regular sequence.

Example 2.1.15. Let k be a field and R = k[x]/(x2) and S = k[x, y]/(x2, y2) be

standard N-graded (i.e. , deg(x) = deg(y) = 1). The natural inclusion of R into S

factors as

k[x]/(x2)→ k[x, y]/(x2)→ k[x, y]/(x2, y2)

where the latter map is the natural surjection. y2 is regular in k[x, y]/(x2), so the

natural inclusion R ↪→ S is a complete intersection homomorphism.

To avoid issues like those arising in example 2.1.10, we will typically work un-

der some additional assumptions on the structure of D, R, and R → S to ensure

presentability and factorizability.

Proposition 2.1.16. Suppose D has no non-trivial units. Then,

1. Any D-field is a field (in the ordinary sense).
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2. Let d1, . . . , dn ∈ D be non-zero and let

Q = k[x1, . . . , xn, | deg(xi) = di]

be the polynomial ring over a field k. Then Q is D-local.

Proof. (1) holds by contrapositive: if k is a D-field and λ ∈ k, then deg(λ−1) =

− deg(λ), forcing deg(λ) to be a unit and hence deg(λ) = 0 by assumption.

For (2), each xi ∈ Q is homogeneous and is a non-unit, and so (x1, . . . , xn) is

contained in the ideal of all homogeneous non-units of Q. On the other hand, since

D has no non-trivial units, we have deg(m) 6= 0 for any non-scalar monomial. This

implies that Q0 = k, and hence Q is D-local with mQ = (x1, . . . , xn)

Proposition 2.1.17. Suppose D has no non-trivial units, and let R be a D-local

ring with R0 = k a field. Then R is minimally presentable. If ϕ : R → S is a D-

local homomorphism with S a commutative Noetherian ring with S0 = l a field, then

ϕ is minimally factorizable, and we can require that the factorization is standard.

Furthermore, a minimal factorization k → Q→ R of the inclusion of k into R yields

a minimal presentation of R.

Proof. Since R is Noetherian (a global assumption for this section), mR is finitely

generated. Let x̄1, . . . , x̄n be a minimal generating set. Set Q = k[x1, . . . , xn] with

deg(xi) = deg(x̄i). The map determined by sending xi to x̄i determines a presentation

R ∼= Q/I, and the map Q � R is a D-local homomorphism, and dimQ = edimR.

Hence R is minimally presentable.

Since S is Noetherian, S/(mRS) is also, and hence S/(mRS) is presentable by the

above argument. Suppose l[y1, . . . ym]→ S/(mRS) is a presentation of S/(mRS), and
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let f : l[y1, . . . ym]→ S be a ring homomorphism determined by lifting of the images

of y1, . . . , ym to S.

Extending scalars yields a commutative diagram

R⊗k l

R S

ϕ⊗klid⊗kl

ϕ

Tensoring over l yields the following diagram

(R⊗k l)[y1, . . . , ym]

R S

(ϕ⊗kl)⊗lf

ϕ

The ring R′ = (R⊗k l)[y1, . . . , ym] and the diagram above satisfy all the required

properties of a minimal standard factorization of ϕ:

1. R′ is a tensor product of D-local rings over a field, and so is D-local

2. R′ → S is surjective

3. Since R 7→ R′ is a composition of flat maps, it is flat

4. R′/(mRR
′) ∼= l[y1, . . . , ym] is a polynomial ring

5. m = edimS/(mRS), so the factorization is minimal

For the final remark, note that in a minimal factorization k → Q → R, Q is a

polynomial ring with edim(Q) = edim(R) and hence Q → R is a minimal presenta-

tion.
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Proposition 2.1.18. Suppose D has no non-trivial units and that R0 = k and S0 = l

are fields. Let ϕ : R → S be a D-local homomorphism. A minimal standard factor-

ization of ϕ is unique up to isomorphism of factorizations, in the following sense: if

R→ T
f−→ S and R→ U

g−→ S are two minimal factorizations of ϕ, then there exists

a commutative diagram

R R

T U

S S

=

∼=

=

Proof. Set S ′ = S/(mRS), and let n = edim(S/(mRS)). Suppose T/(mRT ) =

l[x1, . . . , xn] and U/(mRU) = l[y1, . . . , yn]. Then f(x1), . . . , f(xn) and g(y1), . . . , g(yn)

are minimal generating sets for mS′ , and so their images form vector space bases of

mS′/m
2
S′ . Hence we obtain expressions f(xi) =

∑
j(aij + g(bij))g(yj) for i = 1, . . . , n

in which A = (aij) ∈ Matn×n(k) is an invertible matrix and g(bij) ∈ mR. Let

ψ : k[x1, . . . , xn] → k[y1, . . . , yn] be the k-algebra homomorphism defined by sending

xi to
∑

j(aij + bij)yj.

The composition of ψ with the projection to (y1, . . . , yn)/(y1, . . . , yn)2 is the k-span

of {
∑

j aijyj}i=1,...,n which is a basis since (aij) is an invertible matrix, and hence ψ

is surjective and therefore an isomorphism.

Since the presentations are standard, we have that

T ∼= (R⊗k l)[x1, . . . , xn] ∼= (R⊗k l)⊗l l[x1, . . . , xn].

and similarly U ∼= (R ⊗k l) ⊗l l[y1, . . . , yn]. The map (R ⊗k l) ⊗l ψ : T → U is the

desired isomorphism of presentations.

Remark 2.1.19. Any minimal presentation of R is a standard minimal factorization
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of the map k → R, so the above shows that presentations are minimal up to isomor-

phism.

2.2 Bigraded Rings

Remark 2.2.1. In the classical study of DG algebras, R is an N graded ring concen-

trated in degree zero, and a multiplicative structure is defined upon a free resolution

F of a quotient ring of R by choosing an R-linear map F ⊗R F → F . As F is a

sequence of R modules, rather than the direct sum of all of them, this clashes with

the traditional notion of an algebra introduced in definition 2.1.3. Some authors

in homological algebra (cf. [8, Ch. 1]) refer to these objects as graded algebras re-

gardless. We will adopt the convention that “graded algebra” always mean a direct

sum in the ordinary sense. This is a purely notational decision, for the assignments

⊕nAn 7→ {An}n and {An}n 7→ ⊕nAn are inverse functors exhibiting an isomorphism

of categories. As collateral damage, “chain complex” shall also mean a direct sum of

modules (see definition 2.3.1)

Definition 2.2.2. 1. A homologically D-bigraded ring (“bigraded ring” for short)

A is an N× D-graded ring.

2. A homologically G(D)-bigraded left A-module (“bigraded left A module” for

short) is an Z×G(D)-graded left module.

3. When N ⊂ Z, D ⊂ G(D), i ∈ Z and d ∈ G(D), (N, d) denotes the set

{(n, d) |n ∈ N, } and (i,D) denotes the set {(i, e) | e ∈ D}.

4. The use of the character “*” will always represent the total set of indices un-

derstood by the context. In particular, for i ∈ Z and d ∈ G(D), (i, ∗) denotes

the set {(i, d) | d ∈ D} and (∗, d) denotes the set {(i, d) | i ∈ N}.
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5. For a subset S ⊂ N × D, AS denotes the set ⊕(i,d)∈SA(i,d). Similarly, when

S ⊂ Z×G(D), and M is a bigraded left A module, MS =
⊕

(i,d)∈SM(i,d)

6. For a bigraded left A-module M , an element m ∈ Mi,∗ is homogeneous of ho-

mological degree i, written |m| = i, and an element m ∈M∗,d is homogeneous of

internal degree d, written deg(m) = d. An element m ∈ Mi,d is bihomogeneous

of homological degree i and internal degree d.

7. For brevity, Mi,∗ and MN,∗ will be frequently abbreviated Mi and MN .

Remark 2.2.3. The use of the phrase “homological degree” is in reference to our

ultimate aim of studying graded free resolutions, which are complexes of D-graded

modules indexed by N.

Remark 2.2.4. The most typical way that the notation introduced in definition 2.2.2 is

used is to discuss truncations of bigraded modules to particular homological degrees,

such as M≥i and M≤i, or to particular internal degrees, such as M∗,≥d (when D is

equipped with some partial order) or M∗,D (more generally).

The categories of complexes and of graded modules both come equipped with

shifting (also called suspension) functors, each of which have their own traditional

notation. Furthermore, they each have their own conventions regarding how maps

between graded objects are specified. In this work, an attempt will be made to respect

both conventions, despite some resulting notational peculiarities.

Definition 2.2.5. Let M be a bigraded left A-module, and let (i, d) ∈ Z × G(D).

The shift of M up by (i, d) is the module Σ
iM(−d) with underlying graded pieces

Σ
iM(−d)j,e = Mj−i,e−d. Associated to the shift is the set map which takes an element

m ∈Mj,e and reinterprets it as an element Σ
im(d) of Mj−i,e−d. The left module action

of A upon Σ
iM(−d) is the same as the left module action of A upon M , but twisted
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by the homological degree:

a(Σim(d)) = (−1)i|a|Σi(am)(d).

Definition 2.2.6. When M and N are bigraded modules over a bigraded ring A and

i ∈ Z, an morphism f : M → N of homological degree i is a morphism of underlying

D-graded A-modules which sends Mj,d to Mj+i,d. It is A-linear if it satisfies the

A-linearity condition f(am) = (−1)d|a|af(m).

Remark 2.2.7. The various sign conventions above arise from placing a DG-category

structure on the category of D-graded modules. Since the data of the D-grading is

internal to the starting category, the resulting signs do not depend on the D-grading1.

See [27] for a description of a DG-category structure.

In order to define algebras over a bigraded ring we need a notion of commutativity,

so that the tensor product remains in the appropriate module category. As with

ordinary rings, the center may be defined, but in order to avoid a clash with the

notation Z(A) for the cycles of A, we adopt the unconventional notation center(A).

Definition 2.2.8. For a bigraded ring A, center(A) is the bigraded subring generated

by all bihomogeneous elements of A satisfying ab = (−1)|a||b|ba and a2 = 0 whenever

|a| is odd. A is strictly graded-commutative if center(A) = A. In this case, the

canonical bimodule structure of a left A-module is the assignment ma = (−1)|m||a|am.

When A is strictly graded-commutative, a bigraded ring B is a homologically D-

bigraded A-algebra if there is a bigraded ring homomorphism A→ center(B) turning

B into an A-bimodule.

1This also further explains the use of the phrase “internal degree”
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To avoid the overly-long assumption statements in proceeding material, rings and

algebras will be assumed to be strictly graded-commutative and all bigraded left mod-

ules will be given the canonical bimodule structure unless explicitly stated otherwise.

We will refer to bigraded modules with this canonical bimodule structure simply as

modules.

2.3 Bigraded Differential Algebra

Definition 2.3.1. When R is a D-graded ring, it may be viewed as a bigraded ring

concentrated in homological degree zero, which provides a sensible notion of bigraded

R modules. A chain complex over R is a bigraded module M equipped with a square-

zero map ∂M : M →M of homological degree −1 (preserving internal degrees).

The differentials of chain complexes M and N may be combined in order to create

a differential on the tensor of the complexes. Ensuring that the differential squares

to zero requires the introduction of a sign, a phenomenon common throughout homo-

logical algebra. Chain maps from the tensor product complex define multiplicative

structures on resolutions which are compatible with the differential, resulting in the

substitution of differential-bigraded algebras and modules for rings and chain com-

plexes.

Definition 2.3.2. Let R be a D-graded ring.

1. A Differential-bigraded (DB) R-algebra is a homologically bigraded ring A with

a graded ring homomomorphism from R to A0,∗, further equipped with a ho-

mological degree −1 map ∂ : A → A satisfying ∂2 = 0 and the graded Leibniz

rule:

∂(ab) = ∂(a)b+ (−1)|a|a∂(b).
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2. A differential-bigraded (DB) A-module is a bigraded A module M with a degree

−1 map ∂M satsfying ∂2
M = 0 and the graded Leibniz rule:

∂(am) = ∂(a)m+ (−1)|a|a∂M(m).

3. A differential-bigraded (DB) ideal of A is a subset which is also a DB A-

submodule.

4. A chain map of degree d from M to N is an R-linear map f : M → N of degree

d which additionally satisfies that ∂Nf = (−1)df∂M .

5. When A is an DB R-algebra and B is a DB R-algebra equipped with a map

A→ B compatible with the structure maps of A and B in the sense that

R A

B

commutes, then B is called a DB A-algebra.

6. A morphism of bigraded A-algebras is a bigraded ring homomorphism B → C

which commutes with the A-algebra structure maps of B and C, and which is

also a chain map.

Remark 2.3.3. When A is a DB R-algebra with differential ∂, R-linearity of ∂ follows

from the Leibniz rule imposed by part (1) of the preceding definition, and the fact

that R is concentrated in homological degree zero. Hence, forgetting multiplicative

structure yields a chain complex of R-modules in the ordinary sense.

There is a functor from the category of D-graded rings to the category of homo-

logical bigraded rings which sends R to the bigraded ring concentrated in homological
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degree zero. Using the 0 map as a differential then allows for R to be viewed as a DB

algebra over itself, and for modules and algebras over R to be viewed as DB modules

and algebras. Hence the categories of DB R algebras and DB R modules strictly

enlarge the categories of D-graded R algebras and D-graded R-modules. When A is

said to be a DB algebra without reference to a fixed ring R, this is understood to

mean that A is a DB algebra over the D-graded ring A0,∗.

In the other direction, there is a forgetful functor:

Definition 2.3.4. When M is a DB module over a DB algebra A, forgetting the

differentials yields a bigraded module M over a bigraded algebra A. These are called

the underlying module of M over the underlying algebra of A, and are denoted M \

and A\, respectively.

Definition 2.3.5. For a DB algebra A, set Z(A) = ker(∂) and B(A) = im(∂), the

cycles and boundaries of A, respectively. The homology H(A) is the subquotient

Z(A)/B(A).

The significance of the graded Leibniz rule is that the homology H(A) of any DB

R-algebra is bigraded R-algebra, which we now verify:

Proposition 2.3.6. Z(A) is a DB-subalgebra of A, B(A) is a bihomogeneous ideal

of Z(A), and H(A) is a bigraded R algebra.

Proof. Since ∂ is an R-linear D-graded map of homological degree −1, its image and

kernel are bigraded R-modules. That Z(A) is a subring follows from linearity of ∂

and the Leibniz rule, which gives

∂(1) = ∂(1 · 1) = 2∂(1)



24

and so 1 ∈ ∂(A). That B(A) is an ideal follows from linearity of ∂ and the Leibniz

rule.

A number of standard procedures, such as direct sum and tensor product, are

available for constructing DB algebras and modules and their properties are analogous

for the similar constructions for complexes.

2.4 Adjoining Variables

An essential feature of DB-algebras is the ability to extend their differentials by a

procedure colloqially refered to as ”adjoining variables”. The advantage is that given

a DB-algebra A and a list of cycles, a differential may be defined on a (typically infinite

rank) free A-module turning it into a DB A-algebra in which the chosen cycles are

now bounderies. This allows the structure of infinite resolutions to be more concretely

understood.

As the ring of interest R is always a DB algebra over itself, constructions typically

proceed as a sequence of algebra extensions beginning at R. The constructions involve

graded-commutative algebras possessing important freeness properties.

Definition 2.4.1. Let A be a bigraded R-algebra and x be an indeterminate over A

of degree (i, j) ∈ N×D with i odd. The exterior algebra on x over A, denoted either

by A〈x〉 or A[x] is the A-algebra

A⊕ Ax

with basis {1, x}, and A-bilinear multiplication defined by the multiplication table

x2 = 0, x · 1 = 1 · x = x. Using the sign of the A action on Ax = Σ
iA as given in
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definition 2.2.5, this means that for a, b, c, d ∈ A, we have

(a+ bx)(c+ dx) = ac+ (ad+ (−1)|c|bc)x.

The use of two notations A〈x〉 and A[x] to denote the exterior algebra anticipate

its simultaneous role as the free strictly graded-commutative algebra and free strictly

graded-commutative Γ-algebra on an odd homological degree variable, and the desire

to have a single compact notation for the free strictly graded-commutative algebra

and free strictly graded-commutative Γ-algebra on a set of variables of both even and

odd homological degrees.

Definition 2.4.2. Let A be a bigraded R-algebra and x be an indeterminate over A

of degree (i, j) ∈ N × D with i even. The polynomial algebra on x over A, denoted

A[x], is the A-algebra

A⊕ Ax⊕ Ax2 ⊕ . . .

with basis {xn}n∈N and A-bilinear multiplication defined by the multiplication table

xnxm = xn+m. By convention, x0 = 1.

The N×D-grading of the exterior and polynomial algebras is induced by the grad-

ing of A and the choice of bidegree (i, j), cf. [15, III, §7, Proposition 11] for exterior

algebras and [15, III, § 6, Proposition 10] for polynomial algebras. The exterior and

polynomial algebras assemble into the free strictly graded-commutative algebra on a

set of variables, cf. [15, III, § 7, Proposition 1 and III, § 6, Proposition 2]:

Proposition 2.4.3. For a bigraded set X, the directed system of subsets of X induces

a directed system of algebras. The directed colimit A[X] is the free strictly graded-

commutative algebra on the set X, in the sense that it is adjoint to the forgetful

functor from bigraded A-algebras to graded sets.
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Construction 2.4.4 (Exterior Variables). Let A be a DB algebra, and let z ∈

Z(A) be bihomogeneous with |z| even. Let x be an indeterminate over A of degree

(|z|+1, deg(z)). Then the differential of A may be extended to A〈x〉 by the assignment

∂(x) = z and the imposition of the Leibniz rule, turning A〈x〉 into a DB-algebra.

To clearly specificy the differential of x, this DB algebra will be denoted by either

A〈x | ∂(x) = z〉 or A[x | ∂(x) = z]

Regardless of the status of cls(z) in H(A), z is the boundary of x in A〈X〉 and so

its homology class is zero in H(A〈X〉), hence we say that one has adjoined an exterior

variable x to kill the cycle z.

Construction 2.4.5 (Polynomial Variables). Let A be a DB algebra, and let z ∈

Z(A) be bihomogeneous with |z| odd. Let x be an indeterminate over A of degree

(|z|+1, deg(z)). Then the differential of A may be extended to the polynomial algebra

A[x] by the assignment ∂(x) = z and the imposition of the Leibniz rule, turning A[x]

into a DB-algebra. To clearly specify the differential of x, this DB algebra will be

denoted by A[x | ∂(x) = z].

Regardless of the status of cls(z) in H(A), z is the boundary of x in A〈X〉 and

so its homology class is zero in H(A〈X〉), hence we say that one has adjoined a

polynomial variable x to kill the cycle z.

2.5 Divided Powers

For the polynomial adjunction A[x], a consequence of the Leibniz rule is the familiar

“power rule” calculation ∂(xi) = izxi−1, valid for all i regardless of characteristic.

Consequently xp is a cycle when char(R) = p > 0. With the goal of constructing

algebra resolutions more economically, Tate [37] introduced into commutative algebra

the use of the free divided power algebra.
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Definition 2.5.1. Let A be a bigraded R-algebra and x be an indeterminate over A

of degree (i, j) with i even. The divided power algebra on x over A, denoted A〈x〉, is

the A-algebra

A⊕ Ax⊕ Ax(2) ⊕ . . .

with basis {x(i)}i∈N and A-bilinear multiplication defined by the multiplication table

x(i)x(j) =
(
i+j
i

)
x(i+j), where

(
i+j
i

)
is the binomial coefficient. By convention, x(1) is

denoted by x and x(0) by 1.

The consequence of this modification is that the equalities obtained by inductive

application of the Leibniz rule will no longer involve integer coefficients other than 1.

This avoids the introduction of additional cycles depending on the characteristic.

When a bigraded ring A is also a Q-algebra, the family of functions γn : A → A

given by a 7→ an/n! satisfy certain axioms. These axioms may be generalized to a

family of maps, defined potentially on all of A, but more generally upon some specific

ideal. Following [14], [22] and [19, A 2.4], we define this structure in its natural level

of generality in the context of bigraded rings and algebras.

Definition 2.5.2. Let A be a bigraded R-algebra and I ⊂ A be an ideal. The pair

(A, I) is a divided power ring (or A has a divided power structure on I) if there exists

a family of maps {γn : I → I}n∈N satisfying the following axioms for all x, y ∈ I,

a ∈ A, and n,m ∈ N:

1. γ0(a) = 1 and γ1(a) = a

2. deg(γn(a)) = n deg(a) and |γn(a)| = n|a|

3. γn(a)γm(a) =
(
n+m
n

)
γn+m(a)

4. γn(ax) = anγn(x)
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5. γn(x+ y) =
∑

s+t=n γs(x)γt(y) (“Freshman’s Binomial Theorem”)

6. γn(γm(x)) = (nm)!
n!(m!)n

γnm(x)

A general class of examples is provided by the following:

Proposition 2.5.3. Let A be a bigraded (not necessarily strictly graded-commutative)

ring, and let I ⊂ A be an ideal satisfying I2 = 0. Then there exists a divided power

structure on I defined by γ0(a) = 1, γ1(a) = a, and γn(a) = 0 for n ≥ 2.

Proof. Axioms (1), (3), (4) and (6) all hold trivially. Axiom (2) holds trivially unless

n = m = 1, for which the axiom holds since x ∈ I implies γ1(x)γ1(x) = x2 = 0. The

condition I2 = 0 gives that all interior terms in the expansion of γn(x + y) are zero,

verifying axiom (5).

On the other hand, if I2 = 0 and (A, I) is a divided power ring, it does not follow

that the maps γ≥2 are trivial. See [14, pp. 3.24–3.27] for more details.

Definition 2.5.4. Let (A, I) be a bigraded divided power ring. (A, I) is a strictly

graded commutative divided power ring if A is a strictly graded-commutative bigraded

ring and γ≥n(a) = 0 whenever |a| is odd.

For the remainder of this work, all Γ-algebras will be assumed to be strictly

graded-commutative.

Pairs of bigraded rings and bihomogeneous ideals (A, I) equipped with such a

family of functions assemble into a category, called the category of bigraded divided

power rings, in which the morphisms from (A, I) to (B, J) are bigraded maps from

A to B which send I to J and commute with the divided power operators. It has

the category of strictly graded-commutative bigraded divided power rings as a full

subcategory.
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Divided power rings may be combined with algebra structures.

Definition 2.5.5. Let (A, I) be a divided power ring. A divided power A-algebra or

a Γ A-algebra is a divided power ring (B, J) equipped with a distinguished morphism

of divided power rings from (A, I) to (B, J). A morphism of divided power A-algebras

is a morphism of divided power rings which commutes with the structure maps of the

algebras.

The following two examples are most frequently encountered.

Example 2.5.6. Let B be any A-algebra, and assume that B has a system of divided

powers on an ideal I. A has a trivial system of divided powers on the 0-ideal. B is a

Γ A-algebra with respect to this trivial system of divided powers on A. In particular,

any bigraded divided power ring is always a divided power algebra over its homological

degree 0 piece. Similarly, when C is any A-algebra and ϕ : C → B is any map of

A-algebras, ϕ is a map of divided power algebras from (C, (0)) to (B, I).

Definition 2.5.7. Let (A, I) be any divided power ring. When |x| is even, the

divided power structure on A can be extended to a divided power structure on A〈x〉

with respect to the ideal

IA〈x〉+ (x(∞)) = IA〈x〉+ (x, x(p), x(p2), . . . )

by the assignments γn : x 7→ x(n) and extended to arbitrary elements by imposing

compatibility with the axioms. When |x| is odd, the divided power structure on A

can be extended to a divided power structure on A〈x〉 with respect to the ideal

IA〈x〉+ (x)
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by the assignments γ0(x) = 1, γ1(x) = x, and γn(x) = 0, extended to arbitrary

elements by imposing compatibility with the axioms. These structures are the divided

power structure on A〈x〉 induced by (A, I).

As the prior example suggests, A〈x〉 is the free (strictly graded-commutative) Γ-

algebra over A on a variable x. When adjunction of variables is iterated to adjoin a

(possibly infinite) setX, the result A〈X〉 is still the free (strictly graded-commutative)

Γ-algebra over A on the set X. The following may be found in [14], [19, A 2.4], or

[22, Proposition 1.7.6].

Proposition 2.5.8. Let (A, I) be a Γ-algebra, and X be a (possibly infinite) set of

variables over A. Then A〈X〉 is the free strictly graded-commutative A-algebra with

divided powers, also called the free graded-commutative Γ-algebra, in that it is adjoint

to the forgetful functor from the category of graded-commutative Γ A-algebras to the

category of bigraded sets. In other words, when B is a bigraded A-algebra with divided

powers on an ideal J ⊂ B and ϕ : (A, I)→ B is a morphism of divided power algebras,

then each choice of set {bx}x∈X with |bx| = |x| and deg(bx) = deg(x) determines a

unique bigraded morphism ϕ̃ : A〈X〉 → B satisfying ϕ̃(x) = bx and ϕ̃|A = ϕ.

Remark 2.5.9. Divided powers operations model the expressions an

n!
even when n! is

not invertible in R. In fact, when char(R) = 0, A is any R-algebra, and x is a variable

over A of even degree, the map xn 7→ n!x(n) is an isomorphism of algebras from A[x]

to A〈x〉. In contrast, when char(R) = p > 0, xp = p!x(p) = 0 in A〈x〉, so the same

map fails to be an isomorphism. More generally, when p is not invertible in R, x(pe) is

not contained in the ideal generated by x in A〈x〉 for any e ≥ 1. Hence to determine

a DB-algebra structure on the divided power algebra requires the assignment of the

differential of each of x(pe). Alternatively, one may require that ∂ commute with the

divided power operators by stipulating that, in addition to the Leibniz rule, ∂ respect
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the divided power operations in the sense that

∂(γn(a)) = ∂(a)γn−1(a).

Maps satisfying these properties are called Γ-derivations, to be further discussed in

definition 7.2.2.

Construction 2.5.10 (Divided Power Variables). Let A be a DB algebra, and let

z ∈ Z(A) be bihomogeneous with |z| odd. Let x be an indeterminate over A of degree

(|z|+ 1, deg(z)).

Then the differential of A may be extended to the divided power algebra A〈x〉

by the assignments ∂(x) = z and imposing that ∂ is a Γ-derivation: that it satisfies

the Leibniz rule and ∂(x(n)) = ∂(x)x(n−1). When necessary to explicitly specify the

differential of x, this DB algebra will be denoted by A[x|∂(x) = z]. Regardless of the

status of cls(z) in H(A), z is the boundary of x in A〈x〉 and so its homology class is

zero in H(A〈X〉), hence one says that one has adjoined a divided power variable x to

kill the cycle z.

More generally, DB algebras can have a divided power structure even if there

underlying algebra structure is not that of the free divided power algebra.

Definition 2.5.11. A DB A-algebra B has a divided power structure on an ideal

I ⊂ B if its underlying algebra B\ has a divided power structure on I\, and its

differential is a Γ-derivation with respect to this structure, see definition 7.2.2. A

map of DB algebras with divided powers (B, I) → (C, J) is a bigraded map of DB

A-algebras ϕ : B → C which further satisfies ϕ(I) ⊂ J and which commutes with the

divided power operators.
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2.6 Semifree Extensions

Classically, the polynomial algebra over a field k on a set of variables x1, . . . , xn is

denoted simply by k[x1, . . . , xn]. It may be obtained by sequentially adjoining a single

variable at a time, in any of the n!-many orderings of the variables.

When the above constructions are iterated, giving sequences of adjunctions

A ↪→ A〈x1〉 ↪→ (A〈x1〉)〈x2〉 . . .

and

A ↪→ A[x1] ↪→ (A[x1])[x2] . . . ,

for brevity we will similarly denote the result after n-steps by simply A〈X≤n〉 and

A[X≤n]. While compact, this notation has the disadvantage of obscuring the differ-

ential, and in particular, the fact that the differential of xn may depend non-trivially

on those previously adjoined. Consequently there may be fewer than n!-many ways

of adjoining variables one at a time to reach a particular DB algebra. When multiple

orderings are possible, the same DB algebra results. For example, the classical Koszul

complex R〈x1, . . . xn | ∂(xi) = ri〉 on a set of elements of R can be constructed by ad-

joining variables one at a time in any order (cf. [18, Proposition 1.6.6]). This concept

extends to an arbitrary bigraded set X: A[X] or A〈X〉 will denote an algebra ob-

tained by a sequence of adjunctions of variables according to some fixed, unspecified

well-ordering of X.

Suppressing the differential has the disadvantage of suggesting that these con-

structions induce a functor X 7→ A[X] analogous to forming a polynomial algebra.

This analogy only goes so far: the differential on X is generally non-trivial and in-

volves elements of X adjoined at earlier stages, which can not be encoded in X alone
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(i.e., there is no functor X → A[X]). Despite this flaw, these construction still pos-

sess some of the freeness properties of algebras without differential. To reflect this

distinction, these constructions are called semifree extensions.

Definition 2.6.1. A DB algebra B is a semifree extension of A if B ∼= A[X] where

A[X] is obtained by a possibly infinite sequence of adjunctions of the form described

in construction 2.4.4 and construction 2.4.5. For the rest of this work, A[X] will imply

that the set X has a differential unless specifically indicated otherwise.

Definition 2.6.2. A DB Γ-algebra (B, J) is a semifree Γ-extension of a Γ-algebra

(A, I) if (B, J) ∼= (A〈X〉 where A〈X〉 is obtained by a possibly infinite sequence of

adjunctions of the form described in construction 2.4.4 and construction 2.5.10, with

divided power structure on A〈X〉 induced by the structure of (A, I). For the rest

of this work, A〈X〉 will imply that the set X has a differential unless specifically

indicated otherwise.

Semifree extensions and semifree Γ-extensions enjoy more restricted lifting prop-

erties.

Proposition 2.6.3. Let ϕ : A→ A′ be a morphism of DB algebras, and let {zλ}λ∈Λ =

Z ⊂ Z(A) satisfy that ϕ(Z) ⊂ B(A′), and {xλ}λ∈Λ be a set of variables over A.

Let {bλ}λ∈Λ be any set satisfying ∂(bλ) = zλ for all λ ∈ Λ. Then there is a lift

ϕ̃ : A[{xλ} | ∂(xλ) = zλ] → A′ of ϕ defined by sending xλ to bλ, furnished by the

universal property of the free strictly graded-commutative algebraproposition 2.4.3.

This lift is a bigraded morphism of DB-algebras.

Proposition 2.6.4. Let ϕ : (A, I) → (A′, I ′) be a morphism of DB Γ-algebras, and

{zλ}λ∈Λ = Z ⊂ Z(A) satisfy that ϕ(Z) ⊂ B(A′), and {xλ}λ∈Λ be a set of variables

over A. Suppose there exists {bλ}λ∈Λ ⊂ I ′ with ∂(bλ) = zλ for all λ ∈ Λ. Then there is
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a lift ϕ̃ : A〈{xλ} | ∂(xλ) = zλ〉 → A′ of ϕ defined by sending xλ to bλ, furnished by the

universal property of the free strictly graded-commutative Γ-algebraproposition 2.5.8.

This lift is a bigraded morphism of DB Γ-algebras.

The proof of the following is essentially unaltered from that found in [8, Proposi-

tion 2.1.9], with the addition only of the internal grading.

Lemma 2.6.5 ([8], 2.1.9). If A[X] is a semifree extension of a DB algebra A, then

any diagram of morphisms of DB algebras over A represented by solid arrows

B

A[X] C

β'
γ

α

with a surjective quasi-isomorphism β can be completed to a commutative diagram by

a morphism γ, that is defined uniquely up to A-linear homotopy.

Adjunction of variables results in controlled change in homology as shown by

the following exact sequences. They are generalizations of the classical long exact

sequence of Koszul homology, as found in e.g. [18, Proposition 1.6.12]. They are

found in [37, Theorem 2], stated for general rings. The inclusion of grading requires

that exact sequences incorporate a shift determined by the internal degree.

Proposition 2.6.6. Let A〈x | ∂(x) = z〉 be a semifree extension with |x| = i odd and

deg(x) = j. There is an exact sequence

0→ A
α−→ A〈x〉 β−→ A(j)→ 0

where α(a) = a + 0x is a homological degree zero map and β(a + bx) = b(j) is a

homological degree i map. The long exact sequence in homology is one of D-graded
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modules in which the connecting homomorphism is multiplication by cls(w):

. . . Hn(A) Hn(A〈x〉) Hn−i(A(j))

Hn−1(A) Hn−1(A〈x〉) Hn−1−i(A(j)) . . .

Hn(α) Hn(β)

cls(z)

Hn−1(α) Hn−1(β)

Proposition 2.6.7. Let A〈x | ∂(x) = z〉 be a semifree extension with |x| = i even

and deg(x) = j. There is an exact sequence

0→ A
α−→ A〈x〉 β−→ A〈x〉(j)→ 0

where α(a) = a+ 0x is a homological degree zero map and

β(
∑

alx
(l)) =

∑
alx

(l−1)

is a homological degree i map. The long exact sequence in homology is one of D-graded

modules:

. . . Hn(A) Hn(A〈x〉) Hn−i(A〈x〉(j))

Hn−1(A) Hn−1(A〈x〉) Hn−1−i(A〈x〉(j)) . . .

Hn(α) Hn(β)

Hn−1(α) Hn−1(β)

Unlike in proposition 2.6.6, the connecting homomorphism in proposition 2.6.7 is

not multiplication by cls(w). For a more detailed discussion see [4, Remark 6.1.6].

These sequences demonstrate the utility of divided powers in positive characteris-

tic, as the maps in proposition 2.6.7 are chain maps precisely because of the divided

power structure. The exact sequence of proposition 2.6.7 can still be used to provide

some information about adjoining polynomial variables, since their initial segments

are the same. Since A〈x | ∂(x) = z〉 is a strictly graded-commutative algebra, propo-
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sition 2.6.3 furnishes a comparison map A[x |∂(x) = z]→ A〈x〉. It sends xn to n!x(n),

and so is invertible in all those homological degrees for which n! is invertible. We

make this more precise below:

Proposition 2.6.8. When A0,0 is a ring of equicharacteristic zero, A[x] ∼= A〈x〉 and

so A[x] may be substituted for A〈x〉 in the long exact sequence of proposition 2.6.7.

When A0,0 is a ring of characteristic p > 0 or a local ring of mixed characteristic

p > 0, then there is an isomorphism of truncated chain complexes

A[X]≤|x|p−1
∼= A〈X〉≤|x|p−1

and so A[x] may be substituted for A〈x〉 in the following truncation of the exact

sequence of proposition 2.6.7:

H|x|p−1(A) H|x|p−1(A[x]) H|x|p−1−i(A[x](j))

H|x|p−2(A) H|x|p−2(A[x]) H|x|p−2−i(A[x](j)) . . .

H|x|p−1(α) H|x|p−1(β)

H|x|p−2(α) H|x|p−2(β)

The change in homology is most well-understood in the case of regular elements,

which we now define. A subtle change is necessary from the classical definition to

account for elements of odd degree squaring to zero.

Definition 2.6.9. Let A be a bigraded ring. When a ∈ A is of even homological

degree, a is regular if ab = 0 implies b = 0, i.e., that (0 : a) = 0. When a ∈ A is of

odd homological degree, a is regular if ab = 0 implies b = ca, i.e., that (0 : a) = (a).

Remark 2.6.10. Examining the homology exact sequences of proposition 2.6.6, propo-

sition 2.6.7, and proposition 2.6.8 in low homological degrees shows that when |z| = n
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and i ≤ n,

Hi(A[x | ∂(x) = z]) ∼= Hi(A〈x | ∂(x) = z〉 ∼=


Hi(A) i < n

Hn(A)/ cls(z)Hn(A) i = n

.

This justifies the use of the phrase “adjoining x to kill the cycle z”. See [22, Lemma

1.2.1] and [8, Construction 2.1.8] for more details. Since the connecting homomor-

phism in proposition 2.6.6 is multiplication by cls(z), when cls(z) is regular in H(A)

and of even degree, then the connecting homomorphism is injective, so the long exact

sequence breaks up into short exact sequences. Consequently, when cls(z) ∈ H(A) is

regular, H(A〈x〉) ∼= H(A)/ cls(z)H(A). Using a more complicated spectral sequence

argument, the same statement can be made when cls(z) is a regular element of odd

degree. The proof found in Avramov [8, Proposition 6.1.7] holds for arbitrary algebras

and so holds in the D-graded case without modification.

2.7 Direct Colimits of DB algebras

The construction of a semifree extension (or Γ-extension) by adjoining variables one

at a time is an example of a general phenomenon, often referred to in commutative

algebra as a directed limit. We will adopt the naming convention from category

theory, which instead uses the term “directed colimit”[33, Chapter 3]. When the

indexing set is the natural numbers with the ordinary ordering, we will sometimes

use the term “sequential colimit”.

By definition, a semifree extension is always obtainable as a directed colimit of a

sequence of semifree extensions in which, at each step, a single variable is adjoined. On

the other hand, the colimit of an arbitrary directed system of semifree extensions need

not itself be semifree. In fact, the directed colimit of free strictly graded-commutative
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algebras need not be free, as the following example shows:

Example 2.7.1. Let |x| = deg(x) = 0, and let f : k[x]→ k[x] be the k-algebra map

defined by sending x to x2. Consider the diagram

k[x]
f−→ k[x]

f−→ k[x]
f−→ . . .

The images of the x’s in the sequential colimit are non-units which have all 2i’th roots

for every i, which is not possibly in a polynomial ring over any field.

The following lemmas show the needed criteria for the directed colimit of semifree

extensions, indexed over the natural numbers, to again be a semifree extension. First,

it is necessary that the colimit of the underlying algebras be a free bigraded algebra.

The next lemma shows that this holds provided that in each fixed homological degree,

the variables are eventually mapped to variables.

Lemma 2.7.2. Let A be a bigraded algebra and let

{A[X1]
f−→ A[X2]

f−→ . . . }

be a sequence of free bigraded algebras over A. Suppose that for each l ∈ N, there

exists il � 0 such that f j−i(X i
l ) ⊂ Xj

l for all j > i > il. Then there is a bigraded A

algebra A[X] and maps fi : A[X i]→ A[X] so that (A[X], {fi}) is the directed colimit.

Proof. Let N be equipped with the natural order and N = tl∈NNl be equipped with

the disjoint union ordering (each Nl is just a copy of N). Then colimN(A[X i]) ∼=

colimN(A[X i
l ]), since

colimN(A[X i]) ∼= colimN(⊗l∈NA[X i
l ])
∼= colimN

(∐
l∈N

A[X i
l ]

)
∼= colimN(A[X i

l ])



39

Set L = tl∈N{i > il}. Then L is cofinal to the poset N . Hence colimN(A[X i
l ])
∼=

colimL(A[X i
l ]).

By the assumptions on il, restriction of f to X i
l induces a directed system of

bigraded sets; let X be its colimit. The free strictly bigraded-commutative algebra

functor is cocontinuous (preserves colimits), so

colimLA[X i
l ]
∼= A[colimLX

i
l ]
∼= A[X]

which is a free bigraded algebra, as desired.

The above lemma only deals with underlying algebra structure. The next lemma

shows that directed colimits of DB algebras can be computed in the category of

algebras (i.e., after forgetting differentials).

Lemma 2.7.3. Let {(Bi, f ij)}i≤j∈I be a directed system of DB A-algebras and let

(B, {f i : Ai → B}i∈I) be the directed colimit. Then B\ is the directed colimit of the

directed system of underlying algebras {(Bi)\}.

Proof. We prove the statement in reverse: starting with B\ the directed colimit of

the underlying algebras, we show that a differential may be defined on B\ realizing it

as the directed colimit.

for each a ∈ B\, obtain some i ∈ I and b ∈ (Bi)\ such that f i(b) = a, and define

∂(a) = f i(∂(b)). We show that that this is a well defined differential turning B\ into

a DB-algebra B: let j ∈ N and c ∈ Bj also satisfy f j(c) = a. Since I is directed,

there exists k ∈ I with k ≥ i and k ≥ j. By the definition of the directed colimit,

fk(f ik(b)) = a and fk(f jk(c)) = a. Since f ik and f jk are chain maps and by the
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definition of the directed colimit, we have

f i(∂(b)) = fk(f ik(∂(b))) = fk(∂(f ik(b))).

Similarly, f j(∂(b)) = fk(∂(f jk(b))). Hence it suffices to show the result for i =

j = k.

Since fk(b − c) = a − a = 0, there exists some l ≥ k such that fkl(b − c) = 0.

Then since fkl is a chain map, fkl(∂(b− c)) = 0. Hence f l(fkl(∂(b− c))) = 0, and by

the definition of the directed colimit, fk(∂(b − c)) = 0. Hence fk(∂(b)) = fk(∂(c)),

and so the differential on B is well-defined.

Equipped with this differential, each f i : Bi → B is a chain map. For any DB

A-algebra C with chain maps gi : Bi → C for each i, there is a unique map of

underlying algebras η : B\ → C\ making all of the triangles commute, since B was

taken to be the colimit of the underlying algebras. For each a ∈ B, obtain some i ∈ I

and b ∈ Bi such that f i(b) = a. Then since gi is a chain map,

∂η(a) = ∂gi(b) = gi∂(b) = η∂(a).

Hence η is a chain map. Therefore B equipped with the differential above is the

colimit in the category of differential graded algebras.
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Chapter 3

Minimality and Canonical Resolutions

3.1 Acyclic Closures and Minimal Models

Our ultimate aim is to build DB algebra resolutions of quotient rings (and more

generally of homomorphisms). In order that the structure of the resolution efficiently

encode the information of the resolved object, it will be necessary to introduce a

notion of minimality.

In the classical case of forming a minimal resolution of an R-module (without an

algebra structure on the resolution), the construction proceeds inductively according

to the following procedure.

1. First choose a minimal generating set of M , which defines a surjection F0 �M

with F0 a free R-module

2. On step i, choose a minimal generating set for the kernel of the map from Fi−1

to Fi−2, and use this generating set to define a map from a free module Fi to

Fi−1

To construct DB algebra resolutions this approach will be emulated, but with

adjunction of variables substituted for choosing bases of free modules. When R is

a local ring, “choosing minimal generating sets” is made formal by use of bases of
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M/mRM , where mR is the maximal ideal of R. In the graded case, a suitable analogue

holds for D-local rings by lemma 2.1.8.

For the remainder of this chapter, R will be a commutative Noetherian D-graded

ring, where D is a commutative cancelative monoid with identity element denoted by

0.

When A is a DB algebra over a D-local ring R, A\ has its own irrelevant ideal

with respect to the N × D-grading. To include the differential structure, we require

that this ideal be closed under the differential.

Definition 3.1.1. A DB R-algebra A is D-local if the ideal generated by all bihomo-

geneous non-units of A is proper and closed under the differential, and the structure

map R→ A maps mR to this ideal. In this case, the ideal is denoted by mA.

Proposition 3.1.2. Let A be a D-local DB-algebra. Then A0 is a D-local ring, and

mA = mA0 + A≥1.

Proof. For a, b ∈ A, ab = 1 implies |a| + |b| = 0, and hence the bihomogeneous

elements of A≥1 are all non-units. Therefore for a ∈ A0, a is a unit in A0 if and only

if it is a unit in A.

The condition on the structure map is necessary to avoid situations like the fol-

lowing:

Example 3.1.3. Let R = k[x] be Z-graded by deg(x) = 1. Interpret A = k[x, x−1]

as a DB R-algebra with differential zero. mR = (x) and mA = (0), and the structure

map is injective, so A is not a Z-local R-algebra, even though it is Z-local as a ring.

We now discuss two canonical resolutions. They differ only in positive character-

istic, due to the use of divided power versus polynomial variables.



43

Definition 3.1.4. An augmented DB R-algebra is a DB R-algebra A equipped with

a surjective A-linear bigraded R-algebra homomorphism from A to a quotient ring S

of R (where S is concentrated in homological degree 0). It is connected if A0 = R.

The following construction is classical when A is an augmented DG algebra over a

local ring R, ϕ is the augmentation map, and B = S is the target of the augmentation.

Its proof may be found in many sources, including [37], [22], and [8]. We are unaware

of a proof of the general case, in which R is D-local and B is no longer concentrated

in homological degree 0, so we include it below.

Theorem 3.1.5. Let ϕ : (A, I) � (B,B≥1) be a bigraded surjective morphism of D-

local DB Γ R-algebras, and suppose that for each i, Hi(A) and Hi(B) are finitely

generated R-modules. Set K = ker(H(ϕ)). Then there exists a commutative diagram

A〈X〉

A B

ϕ̃

'
ι

ϕ

satisfying the following conditions:

1. ι : A ↪→ A〈X〉 is a semifree Γ-extension

2. ϕ̃ is a quasi-isomorphism

3. X = X≥1,J where J = {d + deg(a) | d ∈ D, a ∈ K} is the ideal in D generated

by {deg(a) | a ∈ K}

4. For each i ∈ N, let ϕ̃(i) = ϕ̃|A〈X≤i〉. Then {cls(∂(x)) |x ∈ Xi} is a minimal set

of homogeneous generators for ker(Hi−1(ϕ̃(i−1))).

Proof. Set ϕ(0) = ϕ, and ι(0) = idA. We prove the claim by induction. As a base

case, if ϕ is already a quasi-isomorphism, then the trivial semifree Γ-extension with
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X = ∅ satisfies all the required conditions. Let i ≥ 1 Suppose for induction that a

factorization
A〈X≤i−1〉

A B

ϕ̃(i−1)ι(i−1)

ϕ

exists satisfying

1. ι(i−1) is a semifree Γ-extension

2. Hj(ϕ̃(i−1)) is an isomorphism whenever j < i

3. X≤i−1 is concentrated in positive homological degrees and in internal degrees

coming from the ideal J

4. For each 1 < j < i, {cls(∂(x)) |x ∈ Xj} is a minimal set of homogeneous

generators for ker(Hj−1(ϕ̃(j−1))).

5. Hi−1(ϕ̃(i−1)) is surjective

6. ker(Hi−1(ϕ̃(i−1))) is finitely generated

Let cls(a1), . . . , cls(an) be a minimal set of homogeneous generators of the D-

graded R module ker(Hi−1(ϕ̃(i−1))). Writing each al = a + b with a ∈ A and b in

the ideal generated by {x(n) |x ∈ X≤i−1, n ∈ N}, by condition (3) deg(b) ∈ J which

forces deg(al) ∈ J unless b = 0. In this case, al ∈ A belongs to ker(Hi(ϕ)) and so

deg(a) ∈ J by definition of J .

By choice of a1, . . . , an, cls(ϕ̃(i−1)(aj)) = 0 for each j, so we can choose elements

b1, . . . , bn ∈ Bi which satisfy ∂(bj) = ϕ̃i−1(aj) for each j. Let Xi = {x1, . . . , xn} be a

set of variables over A〈X≤i−1〉, and set

A〈X≤i〉 = (A〈X≤i−1〉)〈Xi〉 = (A〈X≤i−1〉)〈x1, . . . , xn | ∂(xj) = bj〉
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The composition ι(i) from A to A〈X≤i−1〉 to A〈X≤i〉 defines a semifree extension of

A. Since B has a divided power structure on all elements of positive homological

degree, proposition 2.6.4 furnishes a lift ϕ̃(i) of ϕ̃(i−1), and hence of ϕ. By repeated

application of remark 2.6.10,

Hi(A〈X≤i〉) ∼= Hi(A〈X≤i−1〉)/ ker(Hi(ϕ̃(i−1))) ∼= Hi(B)

and Hj(A〈X≤i〉) ∼= Hj(B) whenever 1 < j < i, hence condition (2) is satisfied.

The bigraded module ker(Hi(ϕ̃(i))) is finitely generated overA0 by proposition 2.6.6

and proposition 2.6.7, since R is Noetherian, and since finite generation satisfies

the two-out-of-three property on exact sequences. Furthermore, Hi(ϕ(i)) can be

seen to be surjective by examining the long exact sequence in homology induced

by 0 → ker(ϕ(i) → A〈X≤i〉
ϕ(i)−−→ B → 0 and using that Hj(A〈X≤i−1〉 ∼= Hj(B) for

j < i.

Hence we have constructed a diagram satisfying all the required properties of

the induction hypothesis. The sequential limit A〈X〉 =
⋃
iA〈X≤i〉 satisfies all the

required properties (1)-(4) of the theorem.

Definition 3.1.6. A DB algebra A〈X〉 satisfying the conclusion of theorem 3.1.5 is

called an acylic closure of ϕ. If A → S is an augmented R-algebra, then S has a

trivial system of divided powers on elements of positive homological degree. Hence

an acyclic closure of the augmentation to S always exists. An acyclic closure of the

augmentation map is called an acyclic closure of S over A.

The acyclic closure construction can be mimicked but with polynomial rather than

divided power variables. The proof of existence is the same except without concern

for divided powers, and we omit it.
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Theorem 3.1.7. Let ϕ : A� B be a bigraded surjective morphism of DB R-algebras,

and suppose that for each i, Hi(A) and Hi(B) is a finitely generated R-module. Set

K = ker(H(ϕ)). Then there exists a commutative diagram

A[X]

A B

ϕ̃

'
ι

ϕ

satisfying the following conditions:

1. ι : A ↪→ A[X] is a semifree extension

2. X = X≥1,J where J is the ideal {d + deg(a) | d ∈ D, a ∈ K} in D generated by

{deg(a) | a ∈ K}

3. {cls(∂(x)) |x ∈ X1} is a minimal set of homogeneous generators for K/∂(A1)

4. for i > 1, {cls(∂(x)) |x ∈ Xi} is a minimal set of homogeneous generators for

Hi−1(A〈X≤i−1)

Definition 3.1.8. A DB algebra A[X] satisfying the conclusion of theorem 3.1.7 is

called a minimal model of ϕ. If A → S is an augmented R-algebra, then a minimal

model of the augmentation map is called a minimal model of S over A.

In equicharacteristic 0, the minimal model and acyclic closure of a map are the

same: by inductive application of proposition 2.6.8 each step in the construction of the

minimal model and acyclic closure coincide. Otherwise, they can be quite different.

Example 3.1.9. Let R = k[a]/(a2) and k be a field of characteristic p > 0. The

minimal resolution of k is

. . .
a−→ R

a−→ R
a−→ R→ 0
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which is of the form R〈x1, x2 | ∂(x1) = a, ∂(x2) = ax1〉. This is the acyclic closure

of the augmentation R → k. The corresponding semifree extension R[x1, x2] is not

acyclic: ∂(R[x1, x2]2p+1) = aR[x1, x2]2p which is a proper submodule since a is not

invertible, but ∂(xp2) = 0 so ∂(R[x1, x2]2p) = 0.

3.2 Minimality Conditions

Neither acyclic closures nor minimal models need be minimal free resolutions in the

ordinary module-theoretic sense.

Example 3.2.1. Let k be a field of characteristic 0 and let Q = k[a, b] be augmented

by the natural surjection to k[a, b]/(a2, ab). The acyclic closure and minimal model

both begin with the semifree extension

R[x1, x2, x3, x4 | ∂(x1) = a2, ∂(x2) = ab, ∂(x3) = bx1 − ax2, ∂(x4) = ax3 − x1x2]

which is not minimal as a complex since ax3 − x1x2 /∈ mRR[x1, x2, x3, x4].

Despite this failure, acyclic closures and minimal models both still enjoy minimal-

ity properties reminiscent of the property ∂(F ) ⊂ mF . To keep these distinctions

clear, we introduce the following terminology:

Definition 3.2.2. Let R be a D-local ring with homogeneous maximal ideal m. A

complex F of free R-modules is minimal if ∂(F ) ⊂ mF . A DB algebra A is minimal

as a complex if its underlying complex is one of free R-modules and is minimal.

The additional structure of the internal grading of R allows for minimality of com-

plexes to be checked in particular internal degrees, as well as particular homological

degrees.
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Definition 3.2.3. Let R be a D-local ring with homogeneous maximal ideal m.

Let i ∈ Z and N ⊂ Z, and let d ∈ G(D) and D ⊂ G(D). A chain complex F

of free modules over R is minimal in homological degree i and internal degree d if

∂(Fi,d) ⊂ mF . F is minimal in all N-homological degrees and all D-internal degrees

if ∂(FN,D) ⊂ mF .

The following ideals and complexes associated to extensions will be used to de-

scribe alternative notions of minimality. When A is a D-local R-algebra, there is an

associated filtration A ⊇ mA ⊇ m2
A ⊆ . . . by powers of the maximal ideal. For divided

power algebras an alternative filtration is needed.

Definition 3.2.4. A be a D-local DB R-algebra with A0 = R, and suppose that A

has a system of divided powers on the ideal A≥1 of all elements of positive degree.

For each n, the n-divided power ideal of mA, denoted m
(n)
A , is the ideal generated by

all products of the form rn0(a1)(n1) · · · (al)(nl), where r ∈ mR, aj ∈ A≥1 for all j, and

n0 + · · ·+ nl ≥ n. Then A has the filtration A ⊇ mA ⊇ m
(2)
A ⊇ m

(3)
A . . . .

Example 3.2.5. Let k be a field of characteristic 2, and let k〈x〉 be a semifree Γ-

extension with |x| = 2. Then (x)(2) = Spank{x(2), x(3), . . . }. The ideal generated by

x(2) does not contain x(4), since x(2)x(2) = 0, and so the ideals (x), (x(2)), (x(3)), . . . fail

to form a filtration of k〈x〉. This example explains the use of ≥ in definition 3.2.4.

Proposition 3.2.6. Let A be a D-local R-algebra. Then mn
A is a DB ideal for each

n. If (A,mA) is a DB Γ-algebra, then m
(≥n)
A is a DB ideal for each n.

These ideals can be used to define important quotient complexes of algebras.

Definition 3.2.7. Let A be a D-local DB R-algebra. The indecomposable complex

of A, denoted indA, is the quotient complex mA/m
2
A. It is always a complex of

A0/mA0-modules, and so is a complex of D-fields. In particular, when A0 = R, it is a
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complex of R/mR-modules. If A has a divided power structure on the ideal mA, then

mA/(mA)(≥2) is the Γ-indecomposable complex indγ A of A.

These complexes allow for notions of minimality to be defined. This coincides

with the notion of minimality discussed in [8, Ch. 7] and [13, Sec. 1] for semifree

extensions of regular rings.

Definition 3.2.8. Let A be a D-local DB algebra over R = A0. A is absolutely

minimal if either of the following hold:

1. ∂(mA) ⊂ m2
A

2. indA is minimal as a complex of R/mR-modules (i.e., its differential is zero).

An alternative notion is available for algebras with divided powers.

Definition 3.2.9. Let R be D-local, and let A be a DB A-algebra with a system of

divided power on A≥1. A is absolutely Γ-minimal if any of the following hold:

1. ∂(mA) ⊂ m
(≥2)
A

2. indγ A is minimal as a complex of R/mR-modules (i.e., its differential is zero).

Both notions are necessary, as the following example illustrates:

Example 3.2.10. Let k be a field of characteristic p > 0, let |x| = i > 0 be even, and

consider the semifree Γ-extension of k given by k〈x, y | ∂(x) = 0, ∂(y) = x(p)〉. Then

x(p) is not contained in the ideal (x, y)2, So in degrees ip and ip + 1, the complex

ind k〈x, y〉 has the form

0→ ky
∼=−→ kx(p) → 0
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and so is not minimal. The complex indγ k〈x〉 is the k space kx⊕ky with both x and

y mapping to zero, and so is minimal. Hence k〈x, y〉 is absolutely Γ-minimal but not

absolutely minimal.

Minimality has also been studied in the context of extensions of augmented alge-

bras, cf. [22, §9], [8, §6]. In this context, minimality is not an absolute property of

the algebra itself, but is a relative property, depending on how the algebra relates to

the target of the augmentation. We define these notions in the more general context

that minimal models and acyclic closures have been defined in this work. Various

treatments of minimality in previous literature have subtle differences, and will seek

to clarify the situation by introducing new terminology.

First, we need additional notation. The variables in semifree extensions allow

for additional word-length grading to be introduced. This allows for the filtrations

introduced for definition 3.2.8 and definition 3.2.9 to be replaced by filtrations based

on the set of variables.

Definition 3.2.11. Let A ↪→ A[X] be a semifree extension.

1. For each n, the words of length n of the extension, denoted Xn, is the set of

products of the elements of X which involve exactly n-many factors.

2. (Xn) is the ideal generated by Xn, and AXn is the A-linear span of Xn (note

that it need not be closed under the differential).

3. A[X] may be given a new N grading by the assignments A[X]n = AXn. This

is the word-length grading of the extension. Note that A sits in degree 0 with

respect to this grading.
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Definition 3.2.12. Let A ↪→ A〈X〉 be a semifree Γ-extension. For each n, the words

of Γ-length n of the extension, denoted X(n), is the set

{x(n1)
1 · · ·x(nl)

nl
|n1 + · · ·+ nl = n}.

The ideal of Γ-word-length at least n, denoted (X(≥n)), is the ideal generated by

X(n) ∪X(n+1) ∪ . . . . As an A-algebra, A〈X〉 is N-graded by A〈X〉n = AX(n), this is

the word-length grading of the extension.

The following complexes allow for minimality to be identified in a relative context.

Proposition 3.2.13. Let A[X] be a D-local semifree extension of A. Then A +

mA(X) + (X2) is a DB A-module. Now suppose that ϕ : A → S is augmented, and

that the augmentation lifts to an augmentation ϕ̃ : A[X] → S, and set K = ker(ϕ).

Then A+K(X) + (X2) of A[X] is a DB A-module.

Remark 3.2.14. The use of A in the expression A + mA(X) + (X2) refers to the

subalgebra A ⊂ A[X], not the ideal generated by A with A[X]. (X) and (X2) in

these expressions are ideals of A[X], but not closed under the differential. Only mA

and K are DB ideals of A[X].

Proof. The underlying module of each term in A + mA(X) + (X2) is evidently an

A\-module, so we only need verify that it is closed under the differential. This can

be verified by checking each term of the sum:

1. If a ∈ A, then ∂(a) ⊂ A ⊂ A + mA(X) + (X2) because A ⊂ A[X] is a DB

subalgebra.
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2. For a ∈ mA and b ∈ (X), ∂(ab) = ∂(a)b ± a∂(b). Writing ∂(b) =
∑

l∈N bl as a

sum of homogeneous components with respect to the word-length grading, we

see that ab0 ∈ A and abl ∈ mA(X) for l > 0.

3. For x, y ∈ X, ∂(xy) = ∂(x)y ± x∂(y). Writing ∂(x) =
∑

l∈N al as a sum of

homogeneous components with respect to the word-length grading, since A[X]

is D-local, a0y ∈ mA(X) and aly ∈ (X2) for l > 0. A symmetric argument gives

that x∂(y) ∈ mA(X) + (X2).

For A+K(X) + (X2), we again check each term. For a ∈ A or ab ∈ K(X), the same

arguments as above work (note that K is a DB ideal closed under the differential).

For x, y ∈ X, the fact that the augmentation lifts to A[X] and is a chain map implies

that ∂(A[X]1) ⊂ K0. Writing ∂(x) =
∑

l∈N al as a sum of homogeneous components

with respect to the word-length grading, this gives that a0 ∈ K, and applying a

symmetric argument to y gives that

∂(xy) = ∂(x)y ± x∂(y) ⊂ K(X) + (X2)

Example 3.2.15. The assumption that A[X] is D-local is essential. For example, let

k be a field and A = k[x | ∂(x) = 1]. Let B = A, and let ϕ : A → B be the identity

map. Consider the semifree extension A[y, z | ∂(y) = ∂(z) = 1] with lift ϕ̃ sending y

and z to x. The kernel K in the above proposition is zero, and ∂(yz) = z − y. which

is contained neither in A+ mAX + (X2) nor A+KX + (X2).

Definition 3.2.16. Let A[X] be a D-local semifree extension of DB R-algebras. The



53

quotient complex

A[X]/(A+ mA(X) + (X2)) = · · · → kXn → kXn−1 → · · ·

is the complex of indecomposables relative to A, denoted indAA[X]. We say that A[X]

is minimal rel A if indAA[X] is a minimal complex.

Now suppose that ϕ : A→ S is an augmentation, and that the augmentation lifts

to an augmentation ϕ̃ : A[X]→ S, and set K = ker(ϕ̃). The quotient complex

A[X]/(A+K(X) + (X2)) = · · · → BXn → BXn−1 → . . .

is the complex of indecomposables relative to ϕ, denoted indϕA[X]. We say that A[X]

is minimal rel ϕ if indϕA[X] is a minimal complex.

Definition 3.2.17. Let A〈X〉 be a D-local semifree Γ-extension of DB R-algebras.

The quotient complex

A〈X〉/(A+ mA(X(≥1)) + (X(≥2))) = · · · → kXn → kXn−1 → · · ·

is the complex of Γ-indecomposables relative to A, denoted indγAA〈X〉. We say that

A〈X〉 is minimal rel A if indγAA〈X〉 is a minimal complex. Now suppose that ϕ : A→

S is an augmentation, and that the augmentation lifts to an augmentation ϕ̃ : A〈X〉 →

S, and set K = ker(ϕ̃). The quotient complex A〈X〉/(A + K(X) + (X(≥2))) is the

complex of indecomposables relative to ϕ, denoted indγϕ〈X〉. We say that A〈X〉 is

minimal rel ϕ if indγϕA〈X〉 is a minimal complex.

Remark 3.2.18. By the first isomorphism theorem, the complexes indϕA[X] and

indγϕA〈X〉 are of free S-modules.
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The additional structure of the D-grading allows for minimality to be considered

one internal degree at a time, as for chain complexes. Since DB R-algebras are

concentrated in non-negative homological degrees and degrees coming from D (rather

than Z and G(D), as in definition 3.2.3), we consider minimality only in bidegrees

from N × D. In chapter 5 we will only need the notion of absolute minimality in

particular degrees, and so will only define this notion.

Definition 3.2.19. Let A be a D-local DB algebra, and let i ∈ N, d ∈ D and D ⊂ D.

A is absolutely minimal in bidegree (i, d) if indA is minimal in bidegree (i, d). A is

absolutely minimal in all D-degrees if indA is minimal in each bidegree contained in

N×D, respectively.

The corresponding notion for Γ-extensions may be defined analogously.

Definition 3.2.20. Let A be a D-local DB Γ-algebra, and let i ∈ N, d ∈ D and

D ⊂ D. A is absolutely Γ-minimal in bidegree (i, d) if indγ A is minimal in bidegree

(i, d). A is absolutely Γ-minimal in all D-degrees if indA is minimal in each bidegree

contained in N×D, respectively.

The following theorems can be found for the case of augmented DG algebras in

[8, Lemma 7.2.2]. The proof in the D-graded case requires only trivial modification

(the key ingredient being Nakayama’s lemma, which is applicable as all the algebras

are D-local).

Theorem 3.2.21. A[X] is a minimal model of ϕ : A→ B if and only if

1. X = X≥1,J , where J ⊂ D is the ideal {d+ deg(k) | k ∈ ker(A→ B)}

2. A[X] is minimal rel A,

3. ϕ̃ : A[X]→ B is a quasi-isomorphism
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If B = S is a ring concentrated in homological degree 0, then A[X] is a minimal

model of ϕ : A→ S if and only if

1. X = X≥1,J , where J ⊂ D is the ideal {d+ deg(k) | k ∈ ker(A→ S)}

2. A[X] is minimal rel ϕ,

3. ϕ̃ : A[X]→ S is a quasi-isomorphism

The following is due to Gulliksen for the case of DG algebras. A complete proof

may be found in [8, Chapter 6].

Theorem 3.2.22. A〈X〉 is an acyclic closure of ϕ : A→ B if and only if

1. X = X≥1,J , where J ⊂ D is the ideal {d+ deg(k) | k ∈ ker(A→ B)}

2. A〈X〉 is minimal rel A

3. ϕ̃ : A〈X〉 → B is a quasi-isomorphism

If B = S is a ring concentrated in homological degree 0, then A〈X〉 is an acyclic

closure of ϕ : A→ S over A if and only if

1. X = X≥1,J , where J ⊂ D is the ideal {d+ deg(k) | k ∈ ker(A→ S)}

2. A〈X〉 is minimal rel ϕ

3. ϕ̃ : A〈X〉 → S is a quasi-isomorphism

Acyclic closures are minimal in the sense of complexes in the following special

case. It was originally proven by Gulliksen [24] and Schoeller [34]. The proof in

[8, §6] works in the D-graded case. The only necessary fact is that over the D-field

R/mR, all modules are free (cf. [28, Proposition 4.1]), which is the key ingredient in

[8, Proposition 6.2.7].
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Theorem 3.2.23. Let R be a D-local ring with residue R/mR = k. The acyclic closure

R〈X〉 of k over R is minimal as a complex, and hence is the minimal D-graded free

resolution of k over R.

When extensions fail to be minimal, a standard procedure, due to Gulliksen for

Γ-algebras, exists to produce a minimal semifree extension by quotienting out by a

set of variables.

The following is [22, Lemma 3.2.1]

Lemma 3.2.24. Let R〈Y 〉 be a D-local semifree Γ-extension of a D-graded ring.

There exists a D-local semifree Γ-extension R〈X〉 and a surjective bigraded homo-

morphism f : R〈Y 〉 → R〈X〉 satisfying

1. R ↪→ R〈X〉 is minimal rel R.

2. The map indγRR〈Y 〉 → indγRR〈X〉 on indecomposable complexes induced by f

is a quasi-isomorphism.

3. If the residue field of R has characteristic zero, then f is a quasi-isomorphism.

4. If the residue field of R has characteristic p > 0, then f induces Hi(R〈Y 〉) ∼=

Hi(R〈X〉) for i < 2p.

5. If the residue field of R has characteristic p > 0, and for all i B2i(R〈Y 〉) ⊂

R + mY + Y (≥2), then f is a quasi-isomorphism.

Note that, in particular, H0(R〈X〉) ∼= H0(R〈Y 〉) in all cases. Hence if ε : R〈Y 〉 →

S is an augmention, then ε induces an augmentation on R〈X〉 turning it into an

augmented algebra and the quotient R〈Y 〉 → R〈X〉 into a map of augmented algebras.

Definition 3.2.25. The algebra R〈X〉 in the above lemma is called the minimization

rel R or simply the minimization of R〈Y 〉.
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The following is [13, Proposition 1] in the case where R = k is a field and D = Nl.

The condition that R[Y ] be a D-local extension then imposes that the internal degrees

of the variables be non-zero. When allowing R to be an arbitrary ring, the same proof

works.

Lemma 3.2.26. Let R[Y ] be a D-local semifree extension of a D-graded ring. There

exists a D-local semifree extension R[X] and a surjective bigraded homomorphism

f : R[Y ]→ R[X] satisfying

1. R[X] is minimal rel R1.

2. H0(R[X]) ∼= H0(R[Y ]).

3. The map indR[Y ] → indR[X] on indecomposable complexes induced by f is a

quasi-isomorphism. 2

4. The induced map on homotopy Lie algebras is an isomorphism (See chapter 4)

5. Restricting the induced map f∗ to the square-free multidegrees of H(R[Y ]) yields

a quasi-isomorphism

6. If the residue field of R has characteristic zero, then f is a quasi-isomorphism

Note that, in particular, H0(R[X]) ∼= H0(R[Y ]) in all cases. Hence if ε : R[Y ]→ S is

an augmention, then ε induces an augmentation on R[X] turning it into an augmented

algebra and the quotient R[Y ]→ R[X] into a map of augmented algebras.

Remark 3.2.27. Examination of the proofs reveals that the construction of R[X]

involves choosing bases of certain bigraded subspaces on indγ R〈Y 〉 and indR[Y ]. [22,

1Since in [13, Proposition 1] R0 is presumed to be a field and since, in general, minimality rel k
implies absolute minimality, this part is simply stated as absolute minimality therein

2this is not included in [13, Proposition 1], but we place it here to be more consistent with [22,
Lemma 3.2.1].
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Lemma 1.8.7] and [12, Lemma 1] give that different choices induce automorphisms

of R〈Y 〉 and R[Y ], respectively, which in turn induce isomorphisms on the quotients.

Hence, while not explicitly stated in the results in these theorems, the algebras R〈X〉

and R[X] are unique up to isomorphism (of augmented algebras, if appropriate). This

justifies the following definition:

Definition 3.2.28. The algebra R[X] in the above lemma is called the minimization

rel R of R[X].
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Chapter 4

The Bigraded Deviations and Homotopy Lie Algebra

As with Betti numbers, minimal models and acyclic closures allow for numerical in-

variants to be associated to rings and ring homomorphisms. For these to be invariants,

it is necessary that minimal models and acyclic closures be unique up to isomorphism.

The following are proven in [22, p. 1.9.5] (for acyclic closures) and [8, p. 7.2.3] (for

minimal models). The key ingredient is Nakayama’s lemma, which still works in our

setting despite the fact that D-fields need not be fields in the ordinary sense2.1.8, so

the same proofs work.

Theorem 4.0.1. 1. Let ϕ : (A, I)→ (B,B≥1) be a surjective D-local bigraded map

of D-local DB Γ R-algebras, in which Hi(A) and Hi(B) are finitely generated for

each i. Then any two acyclic closures A〈X〉 and A〈Y 〉 of ϕ are isomorphic. The

isomorphism induces an isomorphism of complexes indγAA〈X〉 → indγAA〈Y 〉

and hence #Xi,j = #Yi,j for each (i, j) ∈ N× D.

2. Isomorphisms of rings lift to isomorphisms of acyclic closures, in the following

sense: If the following diagram commutes:

R R′

S S

∼=

=
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then the acyclic closure R〈X〉 of S over R is isomorphic to the minimal model

R′〈Y 〉 of S over R′, and the isomorphism induces an isomorphism of complexes

indγ R〈X〉 → indγ R′〈Y 〉.

Theorem 4.0.2. 1. Let ϕ : A→ B be a surjective bigraded map of D-local DB R-

algebras, in which Hi(A) and Hi(B) are finitely generated for each i. Then any

two minimal models A[X] and A[Y ] are isomorphic. The isomorphism induces

an isomorphism of complexes indAA[X]→ indAA[Y ] and hence #Xi,j = #Yi,j

for each (i, j) ∈ N× D.

2. Isomorphism of rings lift to isomorphisms of minimal models, in the following

sense: If the following diagram commutes:

R R′

S S

∼=

=

then the minimal model R[X] of S over R is isomorphic to the minimal model

R′[Y ] of S over R′, and the isomorphism induces an isomorphism of complexes

indR[X]→ indR′[Y ].

Uniqueness ensures that the following numerical invariants are well-defined.

Definition 4.0.3. Let R be a D-local ring and let (i, j) ∈ N×D. The deviation of R

in bidegree (i, j), denoted εi,j(R), is the number of elements of X with bidegree (i, j)

in an acyclic closure R〈X〉 of R/mR over R.

Definition 4.0.4. Let ϕ : R→ S be a surjective map of D-local rings and let (i, j) ∈

N>1 × D. The deviation of ϕ in bidegree (i, j), denoted εi,j(ϕ), is the number of

elements of X in bidegree (i− 1, j) in a minimal model R[X] of ϕ.
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The reason for the seemingly peculiar choices of acyclic closures and minimal

models in the above definitions is due to the following computational result comparing

the two, due to Avramov. The proof in [8, p. 7.2.6] holds with only trivial modification

needed to account for internal degrees.

Theorem 4.0.5 (Avramov). Let R be a D-local ring with residue k = R/mR, and

suppose R′ = R̂0 ⊗R0 R is presentable. Let ϕ : Q → R′ be a minimal presentation

of R as a quotient of a D-local polynomial ring Q = Q0[x1, . . . , xl]. Let R〈X〉 be an

acyclic closure of k and Q[Y ] be a minimal model of ϕ. Then for each i ≥ 1, there is

a quasi-isomorphism of D-graded R algebras

R〈X≤i〉 ' k[Y≥i] ∼= Q[Y ]/((Y<i) + mQ).

Hence

1. ε1,0(R) = dimQ0 = edimR0.

2. When j 6= 0, ε1,j(R) is the number of xt’s in the list x1, . . . xl which are of degree

j.

3. When i > 1, εi,j(R) = εi,j(ϕ).

Remark 4.0.6. The description of ε1,j(R) comes from the fact that a set of minimal

generators of mQ are in degree-preserving bijective correspondence with a set of min-

imal generators of mR. The connection between the quasi-isomorphisms R〈X≤i〉 '

k[Y≥i] and the equalities εi,j(R) = εi,j(ϕ) for i > 1 is due to the homology of absolutely

minimal semifree extensions of fields. In particular, when k[Y≥i] is absolutely minimal

then Hi(k[Y≥i]) ∼= kYi [8, Rem. 7.2.1], and so Hi(R〈Xi〉) ∼= kYi. Hence the adjunc-

tion of Xi+1 in the next step of the acyclic closure induces a bijection Xi+1 ↔ Yi that
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preserves D-degrees. This phenomenon is responsible for the indexing shift between

definition 4.0.3 and definition 4.0.4.

theorem 4.0.5 can be used to relate the deviations of a ring to classification of its

singularity type. The second part of the following statement is a classical theorem by

Assmus in the local case [2, Theorem 2.7].

Corollary 4.0.7. R is a regular ring if and only if εij(R) = 0 for all i ≥ 2, and R is

a complete intersection ring if and only if εij(R) = 0 for all i ≥ 3.

Proof. Regularity and the complete intersection property are invariant under comple-

tion, so we may assume R0 is complete. Let Q[X] be a minimal model of R. Applying

the theorem, εij(R) = 0 for i ≥ 2 implies that X = ∅, set R ∼= Q is a regular ring.

εij(R) = 0 for i ≥ 3 implies that X = X1, so Q[X] is the Koszul complex on a

minimal generating set of ker(Q→ R). Q[X] is a resolution of R over a regular ring,

and so the minimal generating set of ker(Q → R) is a regular sequence. Hence R is

a complete intersection.

4.1 Bigraded Lie Algebras

In this section, suppose that D has no non-trivial units, and let k be a field. Let

R be a D-graded ring with R0 = k. Then, when Q[X] is a minimal model of R as

in theorem 4.0.5, the sequence of D-graded k-spaces {kXi}i∈N uniquely determines a

bigraded Lie algebra. Conversely, bigraded Lie algebras determine minimal extensions

of k. The goal of this section is to discuss this correspondence in the D-graded case.

Analogously to section 2.2, we first define bigraded Lie algebras and establish some

notational conventions. The classical case (without D-grading) may be found in [3]

and [8, §10]. The Nl-graded case is described in [12]. We will follow the approach

found in [16] which emphasizes connections to Koszul duality.
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Definition 4.1.1. Let k be a field A homologically D-bigraded (or just “bigraded”)

Lie algebra over k is an N× D-graded k module L equipped with two operations:

1. A k-bilinear form [ , ] : L⊗k L→ L, called the bracket of L, which is bigraded :

[Li,j, Ln,m] ⊂ Li+n,j+m] for all (i, j), (n,m) ∈ N× D

2. A family of k-linear maps L(2i+1),j → L4i+2,2j called the reduced square and

denoted x 7→ x[2]

which satisfy the following axioms for all bihomogeneous elements x, y, z ∈ L:

(1) (degree-wise finite generation) Each Li is finitely generated (and hence free)

over k.

(2) (positivity) L0,∗ = L∗,0 = 0

(3) (graded-anticommutativity) [x, y] = −(−1)|x||y|[y, x]

(4) (compatibility) Whenever |x| and |y| are odd, (x+ y)[2] = x[2] + y[2] + [x, y]

(5) the Jacobi identities :

a) (Jacobi identity) [x, [y, z]] = [[x, y], z] + (−1)|x||y|[y, [x, y]]

b) When |x| is odd and λ ∈ k, (λx)[2] = λ2x[2]

c) When |x| is odd, [x[2], y] = [x, [x, y]]

d) When |x| is odd, [x, [x, x]] = 0

e) When |y| is even, [y, y] = 0

Remark 4.1.2. Only the first of the Jacobi identities is likely to be recognizable by

the reader familiar with the classical definition of ungraded Lie algebras. The rest

are only necessary in certain characteristics. For example, the conditions [x, x] = 0
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and [y, [y, y]] = 0 in the above are superflous when 6 is invertible in k. Similarly, the

inclusion of the quadratic square is only necessary in characteristic two. Compatibility

and the condition (λx)[2] = λ2x[2] give that 2x[2] = [x, x] for all x of odd homological

degree, and so

• The quadratic square is completely determined by the bracket when char(k) 6= 2.

• [x, x] = 0 when char(k) = 2.

The analogues of the ordinary structures from algebras are available.

Definition 4.1.3. 1. A morphism of Lie algebras is a map of bigraded k-modules

which commutes with the bracket and reduced square operations.

2. A subalgebra of a Lie algebra L is a subset closed under the bracket and reduced

square operations.

3. A bigraded submodule M ⊂ L is an ideal of L if [M,L] ⊂ M and M is closed

under reduced squares. The quotient k module is then a bigraded Lie algebra.

Note that ideals are also subalgebras, since [M,M ] ⊂M .

4. The subalgebras (and ideals) generated by a set S ⊂ L are the intersection of

all subalgebras (ideals) containing the set S.

4.2 Correspondence with Quadratic Semifree Extensions

In this section, suppose D has no non-trivial units. In this setting, D-bigraded Lie al-

gebras are obtainable from absolutely minimal semifree extensions of k. In fact, there

is an equivalence of categories between bigraded Lie algebras and minimal semifree

extensions of k satisfying additional properties, which we now define.
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Definition 4.2.1. Let k[X] be a D-local semifree extension of a field k. We say that

k[X] is quadratic if ∂(X) ⊂ kX2, where kX2 is the k-space spanned by words of

length exactly two, as defined in 3.2.11.

Remark 4.2.2. Note that in the above definition, X0 may be non-empty. The stip-

ulation that k[X] be D-local then ensures that X0,0 = 0. In establishing the corre-

spondence with bigraded Lie algebras, this is essential to ensuring positivity of the

resulting Lie algebra. It is also important to emphasize in the above definition that

kX2 is the space spanned by words of length two, rather than the ideal (X2). Hence

k[X] quadratic implies that k[X] is minimal rel k, but not conversely. This is further

clarified in definition 4.3.1.

Definition 4.2.3. Trigraded morphisms f : k[X]→ k[Y ] of quadratic semifree exten-

sions are bigraded morphisms of DB algebras which also respect the word-length grad-

ing. Quadratic extensions and trigraded morphisms form the category of quadratic

semifree extensions of k

The following theorem is classical for DG algebras, due to Quillen [32] in charac-

teristic zero and Avramov [3] in positive characteristic.

Theorem 4.2.4. There is an equivalence of categories between quadratic semifree

extensions and bigraded Lie algebras.

We will say a few remarks about the proof to show why this result still holds in

the bigraded setting. For convenience in dealing with the degree shifting involved, we

will introduce the following notation.

Definition 4.2.5. Let k be a field and X be an N × D-bigraded set. The tensor

algebra on X, denoted T (X) is the the free algebra on X (with no assumption of
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graded commutivity). It has a direct sum decomposition

T (X) = k ⊕ kX ⊕ (kX)⊗2 ⊕ . . .

and k-bilinear multiplication defined on pure tensors by

(x1 ⊗ · · · ⊗ xn) · (y1 ⊗ · · · ⊗ ym) = x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ ym.

It is additionally graded by word length; the k-span of the set of words of length n is

denoted by T n(X).

Definition 4.2.6. The free (strictly) graded-anticommutative k-algebra on X, de-

noted A(X), is the exterior algebra on X2i tensored over k with the polynomial

algebra on X2i+1. In other words, it is the quotient of T (X) by the ideal generated by

the graded anti-commutators xy− (−1)|x||y|yx and by the elements z2 where z ranges

over all elements of X of even homological degree. It is additionally graded by word

length; the k-span of the set of words of length n is denoted by An(X).

The relation between the words of length n in k[X] and A[X] is encoded in the

shift: An(ΣX) ∼= Σ
n(kXn).

The equivalence proceeds as follows: starting with a quadratic semifree extension

k[X], set π∗(k[X]) = Σ(kX). Note that this is a bigraded k-space concentrated

in positive homological degrees. Since k[X] is quadratic, the Leibniz rule implies

∂(kX l) ⊂ kX l+1, and in particular, ∂(kX2) ⊂ kX3, which gives the top row in the

following diagram defined for each homological degree i; the map ∆ in bottom row

of the diagram is obtained by imposing commutativity of the lefthand square:
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kXi−1 kX2
i−2 kX3

i−3

(πi(k[X])) A2(πi(k[X])) A3(πi(k[X]))

∂

∼= ∼=

∂

∼=

∆ ∆∧1−1∧∆

(∗)

Using the Leibniz rule to calculate ∂(kX2) shows that the righthand square in

the diagram also commutes. Commutativity of the whole diagram and the condition

∂2 = 0 then gives that (∆ ∧ 1− 1 ∧∆)∆ = 0.

Let π∗(k[X]) be the homologically graded dual of π∗(k[X]) (i.e., π∗(k[X]) =

⊕i≥0 Homk(πi(k[X]), k)) The dual of the projection T (π∗(k[X])) → A(π∗(k[X])) is

an embedding of A(π∗(k[X]))∗ into T (π∗(k[X]))∗.

Similarly to the more classical symmetrization map as described in [19, A2.4], the

antisymmetrization map a : π∗(k[X])⊗ π∗(k[X])→ T (π∗(k[X]))∗ defined by

a(x⊗ y) = x⊗ y − (−1)|x||y|y ⊗ x

, maps surjectively onto the image of A(π∗(k[X]))∗ whenever char(k) 6= 2. In this

case, postcomposing a with the dual of ∆ defines the bracket of π∗(k[X]), which in

turn determines the reduced square as described in remark 4.1.2. When char(k) 6= 2,

∆∗a defines the bracket, but a fails to be surjective: its image in T (π∗(k[X]))∗2 fails

to include the elements x ⊗ x (but no others). The reduced square is defined by

composing the diagonal map d : π∗odd(k[X])→ T (π∗(k[X]))∗, defined by d(x) = x⊗x,

with the dual of ∆.

In either case, we have defined a bracket and reduced square map on π∗(k[X]). As

the maps ∆∗, d, and a are all bigraded, the bracket and reduced square on π∗(k[X])

are bigraded. The Jacobi identities of a bigraded Lie algebra may be verified using

the equation (∆∧ 1− 1∧∆)∆ = 0. Antigraded commutivity and compatibility hold
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for the antisymmetricization and diagonal maps a and d.

Going the other direction, the above steps are all reversible: given a bigraded Lie

algebra L, set X = Σ
−1L∗. The semifree extension k[X] is defined by using ∆ and

imposing commutativity to define the differential in the top row of the diagram (∗).

Positivity gives that X0,0 = 0 and since D has no non-trivial units, this suffices for

k[X] to be D-local.

Furthermore, the steps outlined above are all functorial: trigraded morphisms of

quadratic extensions induce a map of bigraded Lie algeras. When starting with a

map f : L→ K of bigraded Lie algebras, following the steps outlined above in reverse

induces a map on k-spaces Σ
−1(K∗)→ Σ

−1(L∗) which extends uniquely to a trigraded

morphism of quadratic extensions. That it is a chain map follows from the fact that f

commutes with the bracket of L, and that the differential is defined using this bracket.

Remark 4.2.7. The k-space π∗(k[X]) together with ∆ in the above construction is an

example of a bigraded Lie coalgebra. We will not make explicit use of this structure.

4.3 Homotopy Lie Algebras of Rings and Ring Homomor-

phisms

In this section, D will have no non-trivial units. When A = Q[X] is a D-local semifree

extension of a ring Q, each of the ideals ml
A are bigraded, and so each ml

A/m
l+1
A is

a bigraded A-module. When A is absolutely minimal, the Leibniz rule gives that

∂(ml
A) ⊂ ml+1

A . This allows us to make the following definition:

Definition 4.3.1. Let A = Q[X] be a D-local semifree extension of Q. The associated

trigraded ring of A\, denoted grA\ = ⊕l∈Nml
A/m

l+1
A . The homological and D-gradings

are inherited from those of A. The third grading is provided by the index l.
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The differential may be defined on the trihomogeneous elements of grA\ by ∂(a+

ml
A) = ∂(a) +ml+1

A . It is well defined since ∂(ml
A) ⊂ ml+1

A . It satisfies the Leibniz rule

since ∂ does on A.

If Q is furthermore assumed to be a regular ring, grQ[X]0,∗,∗ ∼= k[x1, . . . , xd],

where d = dimQ, so grA0,0,0 = k. In higher homological degrees, the image of X

in degrees (∗, ∗, 1) determines a set of variables over k[x1, . . . , xd], which allows grA

with the differential above to be identified with a semifree extension of k[x1, . . . , xd].

Combining the sets of variables in all homological degrees, grA equipped with the

differential described above may be identified with a semifree extension of k called

the associated trigraded differential algebra of A.

Furthermore, ∂(X) ⊂ X2 in grA since all higher word-length terms land in the

denominators of the quotients. Hence grA is a quadratic extension. Whenever

f : A → B is a bigraded D-local homomorphism, f(mA) ⊂ mB ensures that the

map gr f : grA→ grB defined by gr f(a+ml
A) = f(a) +ml

B is well-defined trigraded

map of algebras. It commutes with the differential since f does. Altogether, we have

proven the following:

Proposition 4.3.2. Let Q be a D-local regular ring with Q/mQ = k. Q[X] 7→ grQ[X]

determines a functor from D-local semifree extensions of Q to D-local quadratic ex-

tensions of k.

This allows us to use the correspondence between quadratic extensions and Lie

algebras to attach a well-defined Lie algebra to arbitrary minimal models of rings and

ring homomorphisms.

Definition 4.3.3. Let Q[X] be an absolutely minimal semifree extension with Q

regular. Then π∗(Q[X]) is defined to be the Lie algebra π∗(grQ[X]) as defined in

theorem 4.2.4.
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In a factorization R → R′ → S, the ring R′ is not necessarily regular so we can

not apply this idea to the minimal model R′[X] directly. This is solved by quotienting

by the maximal ideal of R.

Definition 4.3.4. Let ϕ : R→ S be a D-local bigraded homomorphism with R0 = k

and S0 = l both fields, and let R → R′
ϕ̃−→ S be a minimal standard factorization.

Let R′[X] be a minimal model of ϕ̃. Then Fϕ = k ⊗R R′[X] is a minimal semifree

extension of k, since Fϕ
0 = k ⊗R R′ is a polynomial ring over k. Furthermore, since

R′[X] is a resolution of S over R, Fϕ is a DB algebra model for the left-derived tensor

product k ⊗LR S (so H(Fϕ) = TorR(S, k)). The algebra Fϕ is called the homotopy

fiber of ϕ.

Definition 4.3.5. 1. Let ϕ : R → be D-local bigraded homomorphism with R0

and S0 both fields, and let Fϕ be the homotopy fiber of ϕ. The homotopy Lie

Algebra of ϕ, denoted π∗(Fϕ), is the bigraded Lie algebra π∗(gr(k ⊗R R′[X]))

as defined in theorem 4.2.4.

2. Suppose R0 = k and R is finitely generated over k. Let ϕ : k → R be the

inclusion, and Fϕ be the homotopy fiber. Then π∗(R) = π∗(Fϕ) is the homotopy

Lie Algebra of R.

In the case of local rings, uniqueness of the homotopy Lie algebra follows from more

powerful results proven by Avramov [3, Theorem 4.2] for π≥2(Fϕ) and extended to

π1(Fϕ) by Briggs [16, Theorem 15]. In contrast, our approach is to use the uniqueness

results already proven in this work for the technical constructions involved. It is likely

that an approach along the same lines as those employed in the local case would work,

but the details remain to be checked.
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Theorem 4.3.6. Suppose that D has no non-trivial units, and let R → S be a D-

local homomorphism with R0 = k and S0 = l both fields. Then π∗(Fϕ) is unique up

to isomorphism of bigraded Lie algebras.

Proof. Let R→ T → S and R→ U → S be two minimal standard factorizations. By

proposition 2.1.18, there is a D-local isomorphism ψ : T → U of augmented l-algebras.

It lifts to an isomorphism of minimal models by theorem 4.0.2, and tensoring down

yields an isomorphism ψ̂ : l[X]→ l[Y ].

Then gr(ψ̂) : gr(l[X]) → gr(l[Y ]) is an isomorphism of quadratic semifree exten-

sions. Applying π∗ yields an isomorphism of homotopy Lie algebras.

Applying this result to the inclusion k → R, we get

Corollary 4.3.7. π∗(R) is unique up to an isomorphism of bigraded Lie algebras.

When ϕ is a complete intersection homomorphism, or when R is a complete in-

tersection, π∗(Fϕ) and π∗(R) can be computed explicitly. For simplicity, we describe

a special case.

Example 4.3.8. Suppose the factorization of ϕ has the form R → R[x1, . . . , xn] →

R[x1, . . . , xn]/(xl1, . . . , x
l
n) for some integer c > 1, with deg(xi) = di. The minimal

model for R[x1, . . . , xn]→ R[x1, . . . , xn]/(xj1, . . . , x
j
n) is the Koszul complex

R[x1, . . . , xn, y1, . . . , yn | ∂(yi) = xji ]

and the homotopy fiber is k[x1, . . . , xn, y1, . . . , yn]. Hence π1(Fϕ)di = k(Σx∗i ) and

π2(Fϕ)di = k(Σy∗i ).

When l > 3, the quadratic part of the differential is zero, so π∗(Fϕ) has trivial

bracket and reduced square operations. When l = 2, the homotopy fiber is quadratic,
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and the map ∆ applied to (Σx∗i )
2 is Σy∗i , so the reduced square operation is defined

by q(Σx∗i ) = Σy∗i and the bracket is trivial.

More generally, when φ is surjective, Y0 = ∅, the first step A[Y1] of the above

construction is the Koszul complex on a minimal generating set of ker(φ), and the

second step is the adjunction of a set of variables in bijection with a minimal set of

generators of H1(A[Y1]). This observation will be key in section 6.2. Already, this

allows us to extend corollary 4.0.7 to the relative situation, giving us a criterion for

the complete intersection property of a homomorphism in terms of the deviations.

Proposition 4.3.9. Let ϕ : R → S be a D-local homomorphism with R0 = k and

S0 = l both fields. Then εij(ϕ) = 0 for i ≥ 3 if and only if ϕ is a complete intersection

homomorphism.

Combining all of the results so far with theorem 3.2.23 and theorem 4.0.5, we

already have

Proposition 4.3.10. Let R be a D-graded ring with R0 = k a field. Then εij(R) =

dimk π
i(R)j. Let ϕ : R → S be a D-local homomorphism with S0 = l. Then εij(ϕ) =

diml π
i(Fϕ)j for each (i, j) ∈ N× D.

In fact, this correspondence can be strengthened: ExtR(k, k) has the structure of

a (typically non-commutative) bigraded k-algebra under composition product. The

graded commutator defines a bigraded Lie algebra structure on Ext≥1(k, k). The

adjoint to this forgetful functor is the universal enveloping algebra functor, which

takes a Lie algebra L and builds an (ordinary) algebra UL so that the commutator

of UL coincides with the bracket of L. We end with the following important theorem

which relates the homotopy Lie algebra to the Ext algebra. The complete proof

requires many additional ingredients beyond those discussed in this thesis. A general
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proof of the ungraded case can be found in [16, §2.2, §3.1]. This proof appears to

generalize to the case when ϕ : R→ S is a D-local morphism with D having no non-

trivial units and R0, S0 fields, by adding D-degrees in the arguments. The details

remain to be checked, but we will not make explicit use of this result so we leave this

to future work. We include the result here to further explain the significance of the

homotopy Lie algebra.

Theorem 4.3.11. Let ϕ : R→ S be a local homomorphism and let Fϕ be the homo-

topy fiber. Then Uπ∗(Fϕ) ∼= ExtFϕ(l, l). In particular, when ϕ : Q→ R̂ is a minimal

Cohen presentation of R, Fϕ ' R, so Uπ∗(R) ∼= ExtR(k, k).

4.4 Long Exact Sequences of Homotopy Lie Algebras

In this section, D will have no non-trivial units, ϕ : R → S will be a D-local ho-

momorphism, and we will assume that all factoriziations are standard. Sometimes,

the homotopy Lie algebras of R, S, and ϕ organize into an exact sequence, allowing

information about them to be related.

Definition 4.4.1. Let ϕ : R → S be a D-local homomorphism with R0 = k and

S0 = l both fields. We say ϕ induces an exact sequence in homotopy Lie algebras if

an exact sequence of D-graded k-vector spaces of the form

· · · ← πi(R)⊗k l← πi(S)← πi(Fϕ)← . . .

If such an exact sequence exists of k-vector spaces in each fixed internal degree j ∈ D

for some subset D, then ϕ induces exact sequences in homotopy Lie algebras in all

D-degrees.
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In this situation the structure of π∗F φ may be used to study the transfer of

properties of R along φ to properties of S. The mechanism underlying this comparison

is rather technical, and has only been discussed in the local case, so we outline the

ideas below.

The strategy behind creating such an exact sequence is to begin with a mini-

mal presentation k[X0] → R of R and form the minimal factorization k[X0] → S

as k[X0] → l[X0, Y0] → S. Form the minimal model k[X] of R over k[X0], and ex-

tend coefficients up to l[X0, Y0] to get a semifree extension l[X, Y0] with a surjection

l[X, Y0] � S. Let l[X, Y ] be the minimal model of S over l[X, Y0], and let l[W ]

be the minimal model of S. l[X, Y ] can be compared with the homotopy fiber of

ϕ: k ⊗k[X] l[X, Y ] ∼= l[Y ] is absolutely minimal and k ⊗k[X] l[X, Y ] ' k ⊗R S is the

homotopy fiber of ϕ. Hence, if l[X, Y ] ∼= l[W ], then we would have Xi,j + Yi,j = Wi,j

for each bidegree i, j, a much stronger condition then the exact sequence in defini-

tion 4.4.1. However, such an isomorphism fails in general: l[X, Y ] is only minimal rel

l[X, Y0], and need not be absolutely minimal.

The following diagram summarizes the objects described above.

k[X] l[X, Y ] l[Y ]

R S S/mRS

' ' '

Taking indecomposables and extending to l-coefficients yields an exact sequence

of complexes of k-spaces:

0→ indk[X] → indl[X,Y ] → indl[Y ] → 0

So if there is a quasi-isomorphism f : l[X, Y ] → l[W ] so that the induced map

(ind f)∗,j is a quasi-isomorphism, then Hi(ind l[W ])j can replace Hi(ind l[X, Y ])j for
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each i in the long exact sequence in homology arising from the exact sequence above.

Shifting and dualizing then gives an exact sequence in homotopy Lie algebras in

internal degree j.

In particular, when char k = char l = 0, the minimization of l[X, Y ] rel l is abso-

lutely minimal and acyclic by lemma 3.2.26 and hence is isomorphic to l[W ]. Hence

we obtain the following proposition, which is classical[22, Theorem 3.2.4] in the local

case.

Proposition 4.4.2. Let ϕ : R→ S be a D-local homomorphism and suppose R0 = k

is a field of characteristic zero. Then ϕ induces an exact sequence in homotopy Lie

algebras.

The map ϕ need not always induce exact sequences in homotopy Lie algebras, as

evidenced by the following example:

Example 4.4.3. Let char k = p > 0, and let R = k[a]/(a4), S = k[a]/(a2), and

φ : R→ S be the projection. Since R and S are both complete intersections πi(R) =

πi(S) = 0 for i ≥ 3. A minimal model for S over R begins with R[x1, x2 |∂x1 =

a2, ∂x2 = a2x1]. However, by the Leibniz rule ∂(xp2) = pa2x1f
p−1 = 0, so both xp2

and ∂(x2)xp−1
2 are non-trivial cycles of degree 2p and 2p − 1, respectively. Hence

the construction of the minimal model continues with the adjunction of variables in

degree 2p + 1 and 2p, and so ε2p+2(φ) 6= 0 (in fact, by iterating this argument, the

minimal model will involve the adjunction of an infinite number of variables). As

2p+ 2 > 3, the existence of the long exact sequence in homotopy Lie algebras would

result in a contradiction since 0→ π2p+2(F φ)→ 0 would be exact.

Remark 4.4.4. In the classical local case, long exact sequences in homotopy Lie alge-

bras are known to be induced by Golod morphisms, when S has a finite resolution
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by flat R-modules, and a variety of other cases [16, § 3.5]. These results are likely to

hold in the graded case as well, but the details remain to be checked.
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Chapter 5

Calculating Deviations with Partial Models and Partial

Closures

In his thesis [12] and followup paper [13], Berglund shows that when the relations of R

are generated by monomials, the bigraded deviations may be computed by examining

the homology of some simplicial complexes associated to a minimal set of monomial

generators. In order to prove these results, Berglund constructs a differential graded

algebra resolution of the corresponding quotient ring and computes the number of ba-

sis elements adjoined in certain multidegrees. However, in this construction Berglund

commits a small error. The purpose of this section is to correct this error, and in

the process, to generalize Berglund’s result to the D-graded setting. First, we define

some terms and fix some notation relevant to the setting.

Notation 5.0.1. A monomial ideal is an ideal I ⊂ k[x1, . . . , xn] generated by mono-

mials. R has monomial relations or is a monomial algebra if R = Q/I with I mono-

mial. When R is monomial, it has an Nn-grading obtained by assigning deg(xi) = ei,

where ei is the i-th standard basis vector of Nn For j ∈ Nl, the notation xj denotes

the monomial xj11 · · ·xjnn .

More specifically, Berglund proves the following:



78

Theorem. [13, Theorem 4] Let I be an ideal in Q = k[x1, . . . , xn] and suppose I is

minimally generated by a set M of square-free monomials of degree at least 2. Set

R = Q/I, let α ∈ {0, 1}n and let i ≥ 2. Then

εi,α(R) =


0 xα /∈ {lcm(m1, . . . ,ml) |m1, . . . ,ml ∈M}

dimk H̃i−1,α(∆′Mα
; k) xα ∈ {lcm(m1, . . . ,ml) |m1, . . . ,ml ∈M}

where ∆′Mα
is a certain simplicial complex associated to the pair M,α. 1

Berglund’s strategy for proving this is to create a semi-free extension Q[X] over

Q = k[x1, . . . , xn] based on the combinatorial data of the poset of monomials M

ordered under divisibility. If this extension was both minimal rel Q and acyclic, it

would be a minimal model of R by theorem 3.2.21 and so would relate all of the

deviations of R to the combinatorial data of M . However, Q[X] need not be minimal

nor acyclic, but it is at least minimal and acyclic in degrees coming from N≥1×{0, 1}2.

Berglund’s strategy is to minimize Q[X], obtaining a minimal DB algebra Q[Z], and

then take the minimal model Q[Y ] of R over Q[Z]. Berglund argues that Q[Y ] is then

a minimal model of R over Q, and that the above procedure does not affect the set

XN≥1,{0,1}2 , and hence εi,j(R) = #Xi,j whenever (i, j) ∈ N≥1 × {0, 1}2.

More specifically, Berglund makes the following claim:

Claim 1 ([12], Lemma 4). Let Q[X] be an Nn-local semifree extension with H0(Q[X]) =

R, and assume

Hi(Q[X])α = 0

for all α ∈ {0, 1}n and i > 0. Then Q[X] can be embedded into a semifree exten-

sion Q[Y ] satisfying H(Q[Y ]) ∼= R, and that Q[Y ]α = Q[X]α for all α ∈ {0, 1}n.

1See [13, §2.2], for precise definition of ∆′
Mα

.
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Furthermore, if Q[X] is minimal, then Q[Y ] may be chosen to be minimal.

Unfortunately the last part of this claim is false. When Q[X] is minimal rel Q,

the minimal model Q[Y ] will only be minimal rel Q[X], which may be different from

minimality rel Q.

Example 5.0.2. Let |x| = 2 and consider the semifree extension k[x | ∂(x) = 0] where

k is a field of characteristic zero. This algebra is minimal rel k, but not acyclic, since

H2(k[x]) = kx. The minimal model (k[x])[y |∂(y) = x] of k[x] is minimal rel k[x] and

is acyclic, but is not minimal rel k because

∂(y) = x /∈ k + mk(x) + (x2) = k + (x2)

The minimal model of H0(k[x]) ∼= k over k is just k itself in degree zero, and since

minimal models are unique up to isomorphism, there is no embedding of k[x] into the

minimal model.

In example 5.0.2, the problem arises because variables are mapped to zero, an un-

likely choice to make when attempting to efficiently build a resolution. The following

example shows the same problem arises when one begins with an inexact complex and

adjoins a variable to kill a non-zero homology element, but the non-zero homology

element killed is not a minimal generator of homology.

Example 5.0.3. Let Q = k[x, y] and let E = Q[e1, e2 | ∂(e1) = x3, ∂(e2) = x2y].

H1(E) is minimally generated by the element ye2 − xe1. Adjoin w and z in degree 2

with ∂(w) = yxe2 − x2e1 and ∂(z) = ye2 − xe1, obtaining A = Q[e1, e2, w, z] which is

minimal rel Q. Then the element w−xz represents a nontrivial element in homology

in degree 3, and adjoining a variable to kill this cycle results in the acyclic closure

of A failing to be minimal over Q. The minimal model of H0(A) over Q has only a
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single variable in degree 2 to kill the cycle ye2 − xe1. Hence A is DB algebra which

is minimal rel Q, but can not be embedded into the minimal model of H0(A) over Q.

Examples 5.0.2 and 5.0.3 above reveal what goes wrong in Berglund’s proof of his

Lemma 4: adjoining variables minimally to an existing DB algebra Q[X] ensures only

minimality rel Q[X], not rel Q. In particular, if Z(Q[X]) * Q + mQ[X](X) + (X2),

then the minimal model of Q[X] is not minimal over Q.

5.1 Directed Colimits of Minimal Models

Our approach (theorem 5.1.7) to computing the multigraded deviations will be to

replace the two-step procedure of minimizing and taking the minimal model with the

infinite procedure of adjoining variables and minimizing, one after the other. Hence

it will be necessary to prove more facts about how colimits, adjoining variables, and

minimizing interact with homology and minimality in particular homological degrees.

While in Berglund’s original application Q was a polynomial ring and Q → R was

a minimal standard presentation of a monomial ring, we will state results in their

natural level of generality.

Lemma 5.1.1. Let {(Ai, fij)}i≤j∈I be a directed system of absolutely minimal D-local

DB algebras, let (A, fi : Ai → A)i∈I be the direct colimit. Then A is absolutely

minimal.

Proof. Let a ∈ A. Obtain i ∈ I and b ∈ Ai such that fi(b) = a. Then ∂(a) = fi∂(b).

By assumption, ∂(b) ∈ m2
Ai

. Since each fi is a bigraded map of D-local algebras,

fi(mAi) ⊂ mA. Hence ∂(a) = fi(∂(b)) ∈ (m2
A). Since a ∈ A was arbitrary, A is

absolutely minimal.
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Lemma 5.1.2. Let A = Q[Y ] be a be D-local. Let (i, j) ∈ N × D, and suppose A is

absolutely minimal in degrees (i, j) and (i + 1, j). Let Q[X] be the minimization of

Q[Y ]. Then there is a bijection of sets Yi,j ↔ Xi,j.

Proof. Set A/mA = k. By lemma 3.2.26, indQ[Y ] and indQ[X] are quasi-isomorphic,

and since Q[X] is minimal rel Q, Hi,m(indQ[X]) ∼= kXi,m. By assumption, we have

∂(indQ[Y ]i,j) = 0 and ∂(indQ[Y ]i+1,j) = 0, so

kXi,m
∼= Hi,m(indQ[X]) ∼= Hi,m(indQ[Y ]) ∼= kYi,m.

This result extends to sets of internal degrees.

Corollary 5.1.3. Given D ⊂ D, if Q[Y ] is absolutely minimal in all D-degrees, then

#Yi,d = #Xi,d for all i ∈ N and d ∈ D.

Lemma 5.1.4. Let A = Q[Y ] be D-local with A/mA = k and let D ⊂ D be summand

closed. Suppose A is absolutely minimal in all D-degrees and H≥1(A)D = 0. Then

the minimization Q[X] of A satisfies H≥1(Q[X])D = 0.

Proof. If Q is characteristic zero, then Lemma 3.2.26 gives that Q[X] and Q[Y ] are

quasi-isomorphic and so the result is immediate.

Otherwise, let {bλ}λ∈Λ be a k-basis for B(indA) and {aλ}λ∈Λ ⊂ kY be linearly

independent with ∂(aλ) = bλ for each λ. Set I = ({aλ}λ∈Λ ∪ {bλ}λ∈Λ). Recall, from

the proof of 3.2.26, that Q[X] ∼= Q[Y ]/I, so for each z ∈ Q[Y ], its image in Q[X] will

be denoted z̄.

Let z̄ ∈ Z(Q[X]i,j) satisfy that cls(z̄) 6= 0. Then ∂(z̄) = 0 implies ∂(z) ∈ I and

z̄ 6= 0 implies z /∈ I. As ∂(z) ∈ I and ∂(z) is bihomogeneous of degree (i − 1, j), we
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may write ∂(z) =
∑

λ∈Λ fλaλ + gλbλ for elements fλ, gλ in A, with each summand a

non-zero bihomogeneous element of degree (i− 1, j).

First suppose some fλaλ 6= 0. Since aλ ∈ Y , it is bihomogeneous, and so fλ is

also, and deg(fλ) + deg(aλ) = j ∈ D. Since D is closed under taking summands, this

requires that deg(aλ) ∈ D. As ∂(aλ) = bλ /∈ m2
A, this contradicts the minimality of A

in degrees coming from D.

Next, consider the case where gλbλ 6= 0. Then bλ is homogeneous and so gλ is also,

and so deg(gλ) + deg(bλ) = j ∈ D. By closure under taking summands, this requires

that deg(bλ) ∈ D, and hence that deg(aλ) ∈ D, contradicting the minimality of A in

degrees coming from D.

Hence, in summary, any element z̄ mapping to zero in Q[X] generating a non-

trivial homology element satisfies deg(z) /∈ D. Therefore, H≥1(Q[X])D = 0.

Lemma 5.1.5. Let A be any D-graded DB algebra, and let D ⊂ D be summand-

closed, and suppose that H≥1(A)D = 0. Let A ↪→ A[X] be any semifree extension

such that XN,D = 0. Then Hi,d(A[X]) = 0 for all (i, j) ∈ N ×D.

Proof. Suppose z ∈ Z≥1(A[X]) is bihomogeneous with cls(z) 6= 0. The set X is an

algebra basis for A[X] over A, so we may write z = f+g with f and g bihomogeneous,

f ∈ A, and g ∈ (X). Since H≥1(A)D = 0, we must have g 6= 0. Since g ∈ (X),

deg(g) is contained in the ideal {deg(x) |x ∈ X} + D. By assumption, {deg(x) |x ∈

X} ∩D = ∅, and since D is summand closed, ({deg(x) |x ∈ X}+ D) ∩D = ∅ also.

Hence deg(g) /∈ D, and hence deg(z) /∈ D.

Lemma 5.1.6. Let A be any D-local DB algebra, let D ⊂ D, and suppose that A is

absolutely minimal in all D-degrees. Let A ↪→ A[X] be any semifree extension such

that XN,D = 0. Then A[X] is absolutely minimal in all D-degrees.
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Proof. There is a short exact sequence of complexes of D-graded k-vector spaces

0→ indA→ indA[X]→ kX → 0

and as kX∗,D = 0, indA[X]∗,D = indA∗,D. The absolutely minimality of A in all

D-degrees means that indA∗,D has zero differential, and so indA[X]∗,D has zero dif-

ferential. Hence A[X] is minimal in all D-degrees.

The following generalizes Berglund’s Lemma (claim 1) and provides a corrected

proof. We also provide several corollaries regarding long exact sequences in homotopy

Lie algebras.

Theorem 5.1.7. Let Q be a D-local ring, and let Q� R be a surjective augmentation.

Let Q[Y ] be a D-local semifree extension with H0(Q[Y ]) = R. Let D ⊂ D be summand

closed, and suppose H≥1(Q[Y ])D = 0 and that Q[Y ] is absolutely minimal in all

degrees coming from D. Then there is a minimal model Q[X] of R over Q such that

#Xi,d = #Yi,d for all i ∈ N and d ∈ D.

Proof. Set k = Q/mQ. If the characteristic of k is zero, then let Q[Ỹ ] be a minimal

model of R over Q[Y ] and Q[X] be the minimization of Q[Ỹ ].

By lemma 3.2.26, Q[X] is quasi-isomorphic to Q[Ỹ ] and so Q[X] is acyclic and

H0(Q[X]) ∼= R. Q[X] is also minimal rel Q, and so is a minimal model of R over Q.

Since H≥1(Q[Y ])D = 0 and H0(Q[Y ]) = R, applying lemma 5.1.5 to each step of

the inductive construction of Q[Ỹ ] gives that Ỹi,d = Yi,d whenever d ∈ D. Since Q[Y ]

was absolutely minimal in all D-degrees, lemma 5.1.6 gives that Q[Ỹ ] is also. Then

#Xi,d = #Ỹi,d = #Yi,d for all d ∈ D by corollary 5.1.3.

When char(k) = p > 0, we proceed inductively, starting with A1 = Q[Y ]. As-

suming Ai−1 = Q[X i−1] has been already constructed, adjoin a set of variables W i
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to minimally kill Hi−1(Ai−1) as in the i’th step of the minimal model construction of

theorem 3.1.7, obtaining Ai−1[W i]. Then set Ai = Q[X i] equal to the minimization

of Ai−1[W i].

Let fi−1 be the composite Ai−1 → Ai−1[W i−1] � Ai. This defines a directed

sequence A1 → A2 . . . of semifree extensions of Q

We show by induction that each Ai and fi−1 satisfies the following:

1. #X i
j,d = #Yj,d for all j ≥ 1 and d ∈ D

2. H≥1(Ai)D = 0

3. fi−1 maps X i−1
≤i−2 bijectively to X i

≤i−2.

4. Ai is absolutely minimal

For a base case, A1 = Q[Y ] satisfies (1) − (4) by the hypothesis of the lemma.

Assume that Ai and fi−1 satisfy the hypothesese above. By item 2, when W i+1 is

adjoined to minimally kill Hi(A
i), W i+1

∗,D = ∅. Then Ai[W i+1] is minimal in all D-

degrees by lemma 5.1.6, H≥1(Ai[W i+1])D = 0 by lemma 5.1.6, and #(X i
j,d ∪W i+1

j,d ) =

#X i
j,d = #Yj,d for all j ∈ N and d ∈ D,

The minimization Q[X i+1] satisfies H≥1(Ai+1)D = 0 by lemma 5.1.4, and hence

satisfies item 2. Since Ai[W i+1] is minimal in all D-degrees, corollary 5.1.3 gives that

Q[X i+1] satisfies #X i+1
j,d = #(X i

j,d ∪ W i+1
j,d ) for all j, d ∈ N × D. Then by item 1,

#X i+1
j,d = #Yi+1, so Ai+1 satisfies item 1. Finally, Ai+1 is absolutely minimal, since

the minimization is always absolutely minimal by lemma 3.2.26.

Since W i+1 is adjoined in homological degree i, Ai ↪→ Ai[W i+1] is bijective in

homological degrees ≤ n. Since Ai was absolutely minimal, Ai[W i+1] is absolutely

minimal in homological degrees 1, 2 . . . , i − 1 and in all internal degrees. Hence by

lemma 5.1.2, fi is bijective in homological degrees 1, 2, . . . , i− 2, proving item 1.
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Since the system Q[W i+1] satisfies item 3, lemma 2.7.2 and lemma 2.7.3 gives that

the sequential colimit A is a semifree extensionQ[X]. Since the system satisfies item 4,

lemma 5.1.1 gives that Q[X] is absolutely minimal. Each Ai satisfies Hj(A
i) = 0 for

1 ≤ j ≤ i and H0(Ai) = R, and so Hj(Q[X]) = 0 for j ≥ 1 and H0(Q[X]) = R.

Hence Q[X] is a minimal model of R over Q. The set bijections of item 1 assemble

into a bijection from Xj,d = Yj,d for each j, since X is the directed colimit of X i in

the category of bigraded sets.

Applying this result to the exact sequences of indecomposables discussed in sec-

tion 4.4, we get new results about long exact sequences of homotopy Lie algebras in

particular degrees.

Corollary 5.1.8. Suppose that D has no non-trivial units, and let ϕ : R → S be a

D-local homomorphism of algebras with R0 = k and S0 = l fields. Let D ⊂ D be

summand-closed, and suppose that π1(Fϕ)j = π2(Fϕ)j = 0 whenever j ∈ D. Then

πi(R)j ∼= πi(S)j for all i ∈ N and j ∈ D.

Proof. Let k[X] be a minimal model of R, k[X] → l[X, Y0] → S be a minimal

factorization, and l[X, Y ] be a minimal model of S over l[X, Y0]. Note that since

l[X] is absolutely minimal and acyclic, it is minimal in all D-degrees and satisfies

H≥1(l[X])D = 0. By assumption, deg(y) /∈ D for all y ∈ Y0 and y ∈ Y1, and so by

lemma 5.1.5 and lemma 5.1.6, l[X, Y ] is minimal and acyclic in all D-degrees. Let

l[W ] be a minimal model of S. Applying the theorem gives that Xi,j ∪ Yi,j = Wi,j for

each i ∈ N and j ∈ D.

It is not terribly difficult to check the condition of the prior corollary, but the

condition is stronger than necessary. It was only necessary to ensure minimality of

l[X, Y ] in all D-degrees. Hence we have more generally:
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Corollary 5.1.9. Suppose that D has no non-trivial units and let D ⊂ D be summand-

closed, and let ϕ : R → S be a D-local homomorphism of algebras with R0 = k and

S0 = l fields. Let k[X] be a minimal model of R, k[X]→ l[X, Y0]→ S be a minimal

factorization, and l[X, Y ] be a minimal model of S over l[X, Y0]. If l[X, Y ] is minimal

in all D-degrees, then Xi,j ∪ Yi,j = Wi,j.

In the case of Nl-graded algeras, minimization always behaves well in the set

{0, 1}l of square-free multidegrees, as first observed by Berglund [12, Proposition 1].

Applying this to the relative context allows for deviations of R and S to always be

related in square-free multidegrees.

Corollary 5.1.10. Suppose that ϕ : R → S is a homomorphism of Nl-local algebras

with R0 = k and S0 = l both fields. Let D = {0, 1}l be the set of square-free multide-

grees. Then ϕ induces exact sequences in homotopy Lie algebras in all D-degrees, as

defined in definition 4.4.1. In other words, for each j ∈ D there is an exact sequence

· · · ← πi(R)j ⊗k l← πi(S)j ← πi(Fϕ)j ← . . .

Proof. Let k[X] be a minimal model of R, k[X] → l[X, Y0] → S be a minimal

factorization, and l[X, Y ] be the minimal model of S over l[X, Y0]. Let l[Z] be the

minimization of l[X, Y ]. By lemma 3.2.26, ind l[Z] and l[X, Y ] are quasi-isomorphic,

so H(ind l[Z]) can be substituted for l[X, Y ] in the long exact sequence in homology

induced by the exact sequence

0→ l[X]→ l[X, Y ]→ l[Y ]→ 0.

Since l[Z] is absolutely minimal, H(ind l[Z]) ∼= lZ. Shifting and dualizing, we get the
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long exact sequence of D-graded spaces

· · · ← πi(R)← kZi ← πi(Fϕ)← . . . .

By lemma 3.2.26, we have H≥1(l[Z])D ∼= H≥1(l[X, Y ])D = 0 and l[Z] is absolutely

minimal. Hence by theorem 5.1.7, kZ∗,D ∼= π∗(S)D. Substituting this isomorphism

into the long exact sequence above gives that ϕ induces long exact sequences in

homotopy Lie algebras in all squarefree degrees.

Remark 5.1.11. The arguments in the above proof appear to apply equally well to

semifree Γ-extensions. One potential implication is the computation of the k-spaces

πiγ(ϕ)j, as described in [16, p. 3.5], for particular internal degrees. We leave this

exploration to future work.
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Chapter 6

Off-Diagonal Deviations and the Koszul Property

In this chapter we will focus on the case of finite type N-graded algebras whose degree

0 component is a field. Any such algebra is minimally presentable as a quotient

k[x1, . . . , xn]/I with I ⊂ (x1, . . . , xn)2 and deg(xi) ≥ 1 for each i. A well-studied

case further assumes that the algebra is quadratic, in the sense that in a presentation

as above, I is generated by elements in the k-span of the quadratic polynomials

{xixj | 1 ≤ i, j ≤ n}.

Definition 6.0.1. LetR be an N-graded algebra withR0 = k, and letR = k[x1, . . . , xn]/(f1, . . . , fm)

be a minimal presentation. R is standard graded if deg(xi) = 1 for each i. R is

quadratic if deg(fi) = 2 for each i.

Quadratic algebras enjoy rich combinatorial and homological structure and dual-

ity properties; a complete reference on quadratic algebras is the book by Polischuk

and Positselski [31]. A subclass of quadratic algebras of particular interest are those

enjoying the Koszul property, of which there are many equivalent conditions. Koszul

algebras are of interest because they enjoy duality theory similar to the duality be-

tween quadratic semifree extensions and Ext algebras as described in section 4.2. An

explanation of this duality can be found in [16, p. 2.3]. For the purpose of this work,

we will use the following definitions of the Koszul property. For an explanation of
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why these conditions are equivalent, see [31, Ch 1, 2]. In loc. cit. it is shown that

standard graded Koszul algebras must be quadratic. Our definition will be slightly

more general by allowing algebras which are not standard graded. However, the stan-

dard graded case will still be of interest, as characterizations in terms of deviations

are numerically simpler.

Definition 6.0.2. Let R be an algebra of finite type over a field k = R0. R is Koszul if

the algebra ExtR(k, k) under composition product is generated in homological degree

1. If R is standard graded, the following are equivalent definitions of the Koszul

property:

1. ExtiR(k, k)j = 0 whenever i 6= j.

2. k has a linear graded free resolution over R.

LetR〈X〉 be an acyclic closure of k overR. Then by theorem 3.2.23, HomR(R〈X〉, k)

has zero differential. Using the Γ-monomial basis of R〈X〉 as a free R-module, and

translating the gradings ofX to statements in terms of deviations, we get the following

Proposition 6.0.3. R is standard graded Koszul if and only if the “off-diagonal”

deviations, that is, εij(R) for i 6= j, are all zero.

Avramov and Peeva [10] strengthened the above result by showing that vanishing

of “most” off-diagonal deviations forces the algebra to decompose as a tensor product

over k of a polynomial algebra and a Koszul algebra. Furthermore, they connected

this property to finite Castelnuovo-Mumford regularity of the residue field. The

Castelnuovo-Mumford regularity is an important homological invariant for graded

rings, and we first recall its definition.
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Definition 6.0.4. Let R be an N-graded ring and M be an N-graded R-module. Let

βij(M) = dimk TorRi (M,k)j be the bigraded Betti numbers of M . The Castelnuovo-

Mumford regularity of M is

regR(M) = max{j − i | βij(R) 6= 0}.

Theorem 6.0.5 ([10, Theorem 2]). The following are equivalent:

1. R ∼= K ⊗k S with S a polynomial ring and K standard graded Koszul

2. εij(R) = 0 whenever i 6= j and i ≥ 2

3. regR(k) <∞

In particular, if R is standard graded and reg(k) < ∞ then reg(k) = 0 and R is

standard graded Koszul. More generally, when S = k[t1, . . . , tn], we have

regR(k) = regS(k) =
n∑
i=1

deg(ti)− 1

The goal of this chapter is to extend this result to a statement regarding off-

diagonal vanishing of deviations in homological degrees at least 3. We begin with

some statements about how the existence of long exact sequences in homotopy Lie

algebras allows for the transfer of the Koszul property.

6.1 Koszul Transfer

When R and S are N-graded algebras over fields and ϕ : R → S induces an exact

sequence in homotopy Lie algebras, a few facts about transfer of the Koszul property

along ϕ follow immediately from the placement of zeros in the long exact sequence:
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Theorem 6.1.1. Let ϕ : R→ S be a D-local map of algebras of finite type over fields

R0 = k and S0 = l, and suppose ϕ induces a long exact sequence in homotopy Lie

algebras as in definition 4.4.1:

· · · ← πi(R)⊗k l← πi(S)← πi(Fϕ)← . . .

Then,

1. If εij(ϕ) = 0 for j > i − 1 and i ≥ 2, then regR(k) < ∞ if and only if

regS(l) <∞.

2. If εij(ϕ) = 0 for j > i − 1 and either ϕ is surjective or both R and S are

standard graded, then regS(l) = regR(k)

3. If εij(ϕ) = 0 for j > i and i ≥ 2, then regR(k) <∞ implies regS(l) <∞.

4. If εij(ϕ) = 0 for j > i and either ϕ is surjective or S is standard graded, then

regR(k) ≥ regS(l).

Proof. For item 1, the assumptions give isomorphisms πi(R)j ∼= πi(S)j for each j >

i ≥ 2. By theorem 6.0.5, finiteness of either regR(k) or regS(l) will hold if and only

if the corresponding side of the isomorphism vanishes, from which 1) follows. For

item 2, by item 1 we need only prove the equality when each of regS(l) and regR(k)

are finite. In this case, by theorem 6.0.5, regularity is given by the following formulas:

regR(k) =
∑
j

(j − 1)ε1j(R), regS(l) =
∑
j

(j − 1)ε1j(S).

If R and S are both standard graded, computing regularities with the formulas

above shows regR(k) = regS(l) = 0. If ϕ is surjective, vanishing of εij(ϕ) implies
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ε1j(R) = ε1j(S) for each j and so computing regularities with the formulas above

shows regR(k) = regS(l).

For item 3, the assumptions on vanishing of εij(ϕ) give the following exact se-

quence for each i ≥ 2:

0 πi+2(Fϕ)i+1

πi+1(R)i+1 πi+1(S)i+1 πi+1(Fϕ)i+1

πi(R)i+1 πi(S)i+1 0

and so if regR(k) <∞, πi(R)i+1 = 0 and consequently πi(S)i+1 = 0. For j > i+1,

vanishing of εij(ϕ) and εi+1,j(ϕ) implies isomorphisms πi(R)j ∼= πi(S)j, and so it

follows that εij(S) = 0 for j > i ≥ 2. Hence regS(l) <∞ by [10, Theorem 2]

item 4 holds trivially if regR(k) =∞, so assume it is finite. Then item 3 gives that

regS(l) < ∞, and using the same formulas above to calculate regularities, it suffices

to show that ε1j(R) ≥ ε1j(S) for each j > 1. If S is standard graded, ε1j(S) = 0 for

j > 1 so the statement holds trivially. If ϕ is surjective, then π1(Fϕ) = 0, so the long

exact sequence in homotopy Lie algebras gives a graded injection π1(S) → π1(R),

from which the inequality follows. Hence regR(k) > regS(l) in either case.

Remark 6.1.2. When ϕ is surjective, εij(F
ϕ) = 0 for j > i−1 implies that the minimal

model R[X] of S over R is linear. so S has a linear free resolution over R, and so ϕ is

a koszul morphism as defined in [31, Chapter 2., §5]. It is known that ϕ : R → S is

Koszul implies that R is Koszul if and only if S is Koszul [31, Chapter 2., Corollary

5.4].

The results of theorem 6.1.1 are similar to those in [31, Chapter 2., §5], but hold
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for maps which are not surjective. However, the assumptions of theorem 6.1.1 are

stronger than those of the theorems in loc. cit., since they require properties of the

minimal model of S over R. In particular, we do not know if ϕ Koszul implies that

εij(F
ϕ) = 0 for j > i.

In light of the above facts, we introduce the following definition.

Definition 6.1.3. A bigraded map ϕ : R → S of N-graded algebras is generalized

Koszul of level r if εij(ϕ) = 0 whenever j > i− 1 + r.

Example 6.1.4. Let R be an N-graded algebra. Let r > 0 and let (f1, . . . , fm) be a

regular sequence in R with deg(fj) < r for each j. The minimal model of S over R

is the Koszul complex R[x1, . . . , xm] with deg(xj) < r for each j. Hence the quotient

map R→ R/(f1, . . . , fm) is generalized koszul of level r.

6.2 Complete Intersection Factorizations

The goal of this section is to extend theorem 6.1.1 to the case where εij(ϕ) = 0 when

j > i and i ≥ 3. In the absolute case, based on theorem 6.0.5, Ferraro asked the

following:

Question 6.2.1. [21, Question 3.3] If εij(R) = 0 for i 6= j and i ≥ 3, then does R

admit a decomposition R ∼= Q⊗k S with Q Koszul and S a complete intersection?

The answer to this question is no. Before providing an example, we need the

following fact about how deviations change when quotienting by regular elements.

This recovers a theorem proven by Shamash [35] in the local case (although stated in

quite different language).

Proposition 6.2.2 ([35, Theorem 1]). Let R be a D-local ring and r ∈ R be a regular

element and S = R/(r).
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When r ∈ m2
R, there are equalities

εij(S) =


ε2j + 1 j = deg r

εij else.

When r /∈ m2
R, there are equalities

εij(S) =


ε1j − 1 j = deg r

εij else.

Proof. Let k[X] be a minimal model of R. Since r is a regular element in R =

H0(k[X]), remark 2.6.10 gives that H(k[X, x | ∂(x) = r]) ∼= S.

When r ∈ m2
R, k[X, x] is absolutely minimal and so is the minimal model of

S. The formula for the deviations then follows from the fact that |x| = 1 and

deg(x) = deg(r). When r /∈ m2
R, [8, p. 7.2.11] (a variant of remark 2.6.10) gives

that S ' k[X, x] ' k[X]/(r). k[X]/(r) is the minimization of k[X, x] rel k, and so

is absolutely minimal and is the minimal model of S. After a possible linear change

of variables isomorphism of k[X0], k[X]/(r) ∼= k[X ′] with #X ′0j = #X0j − 1 when

j = deg(r) and #X ′ij = #Xij for all other i and j. This gives the second formula for

the deviations of S.

Example 6.2.3. R = k[x, y, z]/(xy, xz, z2) is Koszul and Cohen Macaulay with depth

1. Let f be a homogeneous regular element of degree three, and set S = R/(f). Since

R is Koszul and f has degree 3, proposition 6.2.2 gives that εij(S) = 0 when i 6= j

and i ≥ 3.

The Hilbert series of S = R/(f) is (1 + t+ t3)(1 + 2t) and S is a zero dimensional

ring. If S ∼= A⊗k B, then dimA+ dimB = 0 which implies dimA = dimB = 0 and
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the Hilbert series of A and B are polynomials dividing (1 + t+ t3)(1 + 2t).

These are irreducible, so as long as A 6= k and B 6= k, one of A or B has

Hilbert series 1 + 2t. The only graded algebra with Hilbert series 1 + 2t is C =

k[a, b]/(a2, ab, b2). If C ↪→ S, there are linear forms g1, g2 in S which square to

zero and are linearly independent over k. But if (ax + by + cz)2 = 0, a = b = 0, so

gi ∈ Span(z) which is a one-dimensional vector space, yielding a contradiction. Hence

S can not decompose in this manner.

Finally, note that S is standard graded and βS2,3(k) 6= 0, so S is not Koszul, and

also S is not a polynomial ring. Hence the desired decomposition of S does not exist.

In example 6.2.3, notice that the algebra is a quotient of a Koszul algebra by

a regular sequence. In fact, this phenomenon characterizes algebras with vanishing

off-diagonal above homological degree 3. The following theorem includes this fact as

a special case.

Theorem 6.2.4. Let ϕ : R → S be an N-local map of graded algebras over k and l,

respectively. Let R → R′
ϕ̃−→ S be a factorization of ϕ, and let f1, . . . , fc minimally

generate ker(R′ → S), ordered by increasing degrees. Suppose that εij(ϕ) = 0 for

j > i ≥ d, and suppose deg(fs) ≥ d. Then fs, . . . , fc is regular on R′/(f1, . . . , fs−1).

Proof. Since π∗(ϕ) = π∗(ϕ̃), we may assume ϕ is surjective. We induct on the length

c− s of the list of minimal generators of degree at least d. When c− s = 0, there is

nothing to show.

Let R[Y ] be a minimal model for ϕ and set S ′ = R/(f1, . . . , fc−1). Then R[Y1]

is the Koszul complex on f1, . . . , fc, and {cls(∂(y)) | y ∈ Y2} forms a minimal gen-

erating set for H1(R[Y1]). The long exact sequence in Koszul homology induced by
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multiplication by fc gives that

H1(R[Y1])→ S ′
fc−→ S ′

is exact. Set K = ker(S ′
fc−→ S ′), so that H1(R[Y1])→ K → 0 is exact.

Note that since multiplication by fc is a degree deg(fc) ≥ d map, K is contained

in a graded vector space concentrated in degrees at least deg(fc).

H1(f1, . . . , fc)→ K → 0

and tensoring with k induces an exact sequence of graded vector spaces, inducing an

inequality

dimkH1(f1, . . . , fc)⊗R k ≥ dimkK ⊗S k.

Continuing the inductive construction of the minimal model, ε3j(R) = #Y2j forms

a minimal generating set of H1(f1, . . . , fc). Tensoring with k yields a basis, so by

assumption,

0 = ε3j(ϕ) = dimk (H1(f1, . . . , fc)⊗R k)j

for j ≥ deg(fc). Hence dimk(K ⊗S k)j = 0 for all j, and so K ⊗R k = 0. By

Nakayama’s lemma, we obtain that K = 0.

Hence fc is regular on S ′. Let ϕ′ be the map from R to S ′, and let R[X] be a

minimal model for S ′. In particular R[X1] is the Koszul complex on f1, . . . , fc−1. By

proposition 6.2.2, when fc ∈ m2
R,

εij(ϕ
′) =


εij(ϕ)− 1 i = 2, j = deg(fc)

εij(ϕ) else
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and when fc /∈ mR,

εij(ϕ
′) =


εij(ϕ)− 1 i = 1, j = deg(fc)

εij(ϕ) else

.

In either case the hypotheses on deviations are satisfied for ϕ′. By induction, we

are done.

Corollary 6.2.5. Let ϕ : R → S be a map of graded algebras over k and l so that

εij(ϕ) = 0 for j > i ≥ 2. Then ϕ factors as R
α−→ T

β−→ S with β a complete

intersection homomorphism and α generalized Koszul of level 1.

Proof. Let R → R′
ϕ̃−→ S be a minimal standard factorization of ϕ. Let ker(ϕ̃) be

minimally generated by f1, . . . , fc. Taking d = 3 in the theorem, we get a factorization

R′
α̃−→ T

β−→ S with β a complete intersection homomorphism generated by a regular

sequence of maximal length contained in f1, . . . , fc. By maximality, ε2j(α) = 0 when

j > 2. Since β is a complete intersection homomorphism, ε≥3(α) = ε≥3(ϕ), from

which it follows that α̃ is generalized Koszul of level 1.

Let α be the composition α : R → R′
α̃−→ T . Since R → R′ → S was already a

minimal standard factorization of ϕ, R′ is flat over R and R′/(mRR
′) is a polynomial

ring. Hence R → R′
α̃−→ T is a minimal standard factorization of α. Therefore

εij(α) = εij(α̃) for all i, j. Hence α is generalized Koszul of level 1.

Applying this result when d = 3 and to the minimal presentation of S as a quotient

of a polynomial ring, we get the following:

Corollary 6.2.6. Let S be an N-local algebra with S0 = k, and suppose that εij(S) = 0

when j 6= i and j ≥ 3. Then S ∼= (Q⊗kP )/(f1, . . . , fc) with Q standard-graded Koszul,
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P a polynomial ring, and f1, . . . , fc a regular sequence. If S is standard graded then

S ∼= Q/(f1, . . . , fc) with Q Koszul and f1, . . . , fn a regular sequence.

Proof. Let R
ϕ−→ S be a minimal presentation of S as a quotient of a polynomial ring.

Then εij(ϕ) = εij(S), so applying the theorem gives that ϕ factors as R
α−→ T

β−→

with β a complete intersection and α generalized Koszul of level one. Since R is

a polynomial ring, regR(k) < ∞ and so by Proposition 6.1.1, regT (k) < ∞. By

theorem 6.0.5 T ∼= Q⊗k P with Q Koszul and P a polynomial ring. If S is standard

graded then R can be taken to be also, from which it follows that T is Koszul, so we

can take T = Q and P = k in the decomposition T ∼= Q⊗k P .
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Chapter 7

Rigidity and Asymptotic Invariants

Few sequences of integers can be realized as the sequence of deviations of a local ring.

This property is informally known as the rigidity of deviations. Constraints on the

sequence of deviations enrich homological characterizations of different singularity

types. The first result of this kind, due to Gulliksen, establishes a wide gulf between

complete intersections and all other singularities.

Theorem 7.0.1 (Gulliksen, [23]). Let R be a local ring. If εi(R) = 0 for i� 0, then

εi(R) = 0 for i ≥ 3 and R is a complete intersection.

The strongest of these results, proven by Halperin for rings and generalized by

Avramov [4] to homorphisms, shows that deviations can not vanish in even a single

degree unless ring or homomorphism is a complete intersection.

Theorem 7.0.2. Let ϕ : R → S be a local homomorphism such that S has a finite

resolution by flat R modules. and let R→ R′
ϕ̃−→ Ŝ be a minimal Cohen factorization

of ϕ. If εi(ϕ) = 0 for some i > 3, then εi(ϕ) = 0 for all i ≥ 3 and ker(ϕ̃) is generated

by a regular sequence.

The goal of this chapter is to establish similar results for graded deviations, es-

pecially involving vanishing of graded deviations in particular internal degrees. In
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the case of N-graded algebras of finite type over a field, as discussed in chapter 6,

vanishing of off-diagonal deviations is related to the Koszul property. Hence, proving

rigidity results for off-diagonal deviations will similarly show a substantial difference

in homological behavior between Koszul and non-Koszul algebras. Throughout, we

will assume that all rings are N-graded and that their degree 0 component is a field.

The arguments likely generalize to other settings, but as our primary application

involves the Koszul property, we leave such generalizations to future work.

7.1 Category

A key ingredient in the proofs of classical rigidity theorems is the notion of weak

category. The name comes from the notion of the Lusternik-Schnirelmann category

of a topological space. A brief history of the development of category for DG algebras

can be found in [16, §3.2]. As explained in this work, there is a sequence of numerical

invariants cati for each i ∈ N, which are nilpotency conditions stronger than finiteness

of weak category. As we will only make use of weak category in this work, we will

leave further exploration to the interested reader.

Definition 7.1.1. Let A be a D-local DB algebra. The Loewy length, denoted ``(A)

of A is

``(A) = inf{i |mi
A = 0}

Definition 7.1.2. Let ϕ : R → S be a factorizable D-local map of k-algebras with

R0 = k, and let Fϕ = k[Y ] be the homotopy fiber. For each i, set k[Y>i] = k[Y ]/(Y≤i).

The weak category of ϕ, denoted wcat(ϕ), is

wcat(ϕ) = inf{m ∈ N | ``(H∗(k[Y>i])) ≤ m+ 1 for all i ≥ 1}.
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Finite category homomorphisms arise in particular from morphisms of finite pro-

jective dimension. In particular, when ϕ : k[X0] → R is a minimal presentation of

R, pdk[X0](R) < ∞, and hence the weak category of a minimal model of R is finite.

More generally, weak category is finite for any morphism of finite flat dimension.

Definition 7.1.3. LetM be a D-gradedR-module. The flat dimension of M , denoted

flR(M), is the infinum of the lengths of resolutions of M by flat R-modules. A D-local

homomorphism ϕ : R→ S is of finite flat dimension if flR(S) <∞.

Lemma 7.1.4. Let ϕ : R→ S be a bigraded D-local homorphism satisfying flR(S) <

∞. Then wcat(ϕ) ≤ flR(S) + edim(S/mRS) + 1 <∞.

Proof. The local case is contained in [4]. The graded case may be recovered from the

local case by localizing at m. The key observation is that each of flR(S), edim(S/mRS)

localize, as does ``(H∗(A
[i])) for each i.

Localization of flR(S) and edim(S/mRS) are classical. For Loewy length, for

notational convenience set B = AmR and let n be its maximal ideal. Set B[i] = B/n≤i.

Notice that (A[i])mR
∼= B[i], which induces an isomorphism on homology. Hence

``(A[i])mR = ``(B[i]).

7.2 Deviation Shifts and Rigidity

Definition 7.2.1. Let ϕ : R→ S be an N-local homomorphism with R0 and S0 both

fields. The maximal deviation shifts of ϕ is the sequence

tεi (ϕ) = max{j | εij(ϕ) 6= 0} − i.

When ϕ : k → R is the inclusion, these are the maximal deviation shifts of R and are

denoted tεi (R).
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In particular, non-vanishing of a deviation εij(ϕ) for j > i exactly corresponds to

the maximal deviation shift tεi (ϕ) being non-zero.

Our work will involve the construction of a particular homomorphism called a

Γ-derivation, which we now define:

Definition 7.2.2. Let A be a DB R-algebra, let A〈X〉 be a semifree Γ-extension, and

let U be a DB module over A〈X〉. A homological degree d R-linear map ϑ : A〈X〉\ →

U \ is a (homological degree d) A-linear Γ-derivation if it satisfies the following axioms:

1. (A-linearity) ϑ(a) = 0 whenever a ∈ A.

2. (Leibniz Rule) ϑ(ab) = ϑ(a)b+ (−1)|a|daϑ(b) for all a, b ∈ A〈X〉.

3. (Compatibility with Divided Powers) ϑ(x(n)) = ϑ(x)x(n−1) for all x ∈ X with

|x| even, and all n ∈ N .

If in addition ϑ satisfies the equation ∂ϑ = (−1)dϑ∂, then it is a chain Γ-derivation.

The following theorem is the main result of this chapter on the rigidity of graded

deviations. In particular, it shows that once off-diagonal deviations are non-zero

in some odd homological degree, they are non-zero in every remaining homological

degree. The proof is similiar to that in [4], with modifications made for the inclusion

of the grading.

Theorem 7.2.3. Let ϕ : R→ S be a graded homomorphism with R0 = k and S0 = l.

Assume wcat(ϕ) < ∞ and let i ≥ 3 be an odd integer. If tεi (ϕ) > 0, then for each

j > i, tεj(ϕ) ≥ tεj−1(ϕ).

Proof. After possibly replacing R by R′ in a minimal standard factorization R →

R′ → S, we may assume ϕ is surjective and take R[Y ] to be a minimal model of S.
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By induction, it suffices to show that

tεi+1(ϕ) ≥ tεi (ϕ) (7.1)

tεi+2(ϕ) ≥ tεi+1(ϕ). (7.2)

Set A = R[Y<i−1] and let A〈X〉 be an acyclic closure of S over A. Since A[Y≥i−1] =

R[Y ] is a minimal model, by proposition 2.6.3 there is a quasi-isomorphism γ from

R[Y ] to A〈X〉. Comparing R[Y ] and A〈X〉, we have:

(a) Xj = ∅ for 1 ≤ j < i− 2 since Hj(R[Y<i−1]) = 0 for j = 1, . . . , i− 3

(b) Yi−1 and Xi−1 are in degree-preserving bijection since both count a minimal

generating set of Hi−1(A)

(c) Yi andXi are in degree-preserving bijection since the comparison map γ : R[Y ]→

A〈X〉 is bijective in degrees 1, . . . , 2i − 1, and so in particular Hi(A[Yi−1]) ∼=

Hi(A〈Xi−1〉).

Set t = tεi (ϕ) + i. Assuming that either (7.1) or (7.2) fail, we prove the following

claim:

Claim: There exists an k-linear chain Γ-derivation θ of k〈X〉 = k ⊗A A〈X〉(t)

such that θ(x) = 1 for some x ∈ Xi−1 and θ(x′) = 0 for all other x′ ∈ X.

From the claim, we derive a contradiction as follows: the claim implies cls(x(r)) 6=

0 ∈ H(k〈X〉) for all r ≥ 0, as if x(r) = ∂(v) for some v, then

1 = θr(x(r)) = θr∂(v) = ∂θr(v) = 0.

Then xr = r!x(r) 6= 0 when char(k) = 0, and x · x(p) · · ·x(pr) = x(1+p+···+pr) 6= 0

when char(k) = p > 0. Hence for each r ∈ N, there exists a non-zero r-fold product
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of elements of H(A〈X〉).

The quasi-isomorphism γ : R[Y ]→ A〈X〉 induces a quasi-isomorphism of k[Y≥i−1]

with k〈X〉. Then as wcat(ϕ) < ∞, it follows from this quasi-isomorphism that

``(H∗(k〈X〉)) < ∞, and taking r in the multiplication formulas above to be greater

than wcat(ϕ) yields a contradiction. So, it suffices to prove the claim.

First assume (7.1) fails. Set t = tεi (ϕ) + i. The assumptions on vanishing of

deviations gives that Yi−1,t 6= ∅ and Yi,>t = ∅, and so section 7.2 and section 7.2 give

that Xi−1,t 6= ∅ and Xi,>t = ∅.

Recall from definition 3.2.17 the complex indγ A〈X〉 has the form

· · · → SXi+1 → SXi → SXi−1 → 0→ . . .

and that this complex is minimal by theorem 3.2.22. Choose x ∈ Xi−1,t. As A〈X〉 is

a graded resolution, the differential of indγ A〈X〉 maps Xij into (S≥1Xi−1)j, where

(S≥1Xi−1)j = {s1x1 + · · ·+ snxn | sm ∈ S≥1, xm ∈ Xi−1, deg(sm) + deg(xm) = j}.

Since each sm appearing in the sum above is of positive degree, the xm’s appearing

in the sum are of degree at most j − 1. Since Xi,>t = ∅, applying the above fact for

each j yields that that the image of the differential is contained in SXi,<t. Hence

Sx generates a free summand of the cokernel of the differential. By [8, p. 6.3.6], a

homological degree |x| = i − 1 derivation ϑ : A〈X〉 → A〈X〉(t) exists satisfying that

ϑ(x) = 1 and ϑ(x′) ⊂ mAA〈X〉 for x′ 6= x. Then θ := l⊗Aϑ satisfies the requirements

of the claim.

Now assume (7.2) fails. Again, let t = tεi (ϕ) + i. Since (7.1) holds, we have

Xi−1,t 6= ∅ and Xi,>t 6= ∅. Again chose x ∈ Xi−1,t and set X ′i−1 = Xi−1 \ {x}. Let
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s1, . . . , se be a set of minimal generators for the maximal ideal of S, and let M be the

complex in the bottom row of the diagram:

. . . SXi+1 SXi Sx⊕ SX ′i−1 0

. . . 0
⊕e

l=1 Sml S(−t) 0

∂i+1

fi+1 fi

∂i

fi−1

[
s1 ... se

]

where m1, . . .ml is a basis of Mi with deg(ml) = deg(sl) − t. The chain map f• is

constructed as follows:

• fi−1 is the map sending x to 1 and all of X ′i−1 to zero.

• indγ A〈X〉 and M are minimal complexes, so a map fi exists so that [ s1 ... se ]fi =

fi−1∂i. In more detail, for each x′ ∈ Xi, choose b ∈ SX ′i−1 and a1, . . . ae ∈ S

and write

∂i(x
′) = b+

e∑
l=1

alslx (7.3)

where b ∈ SX ′i−1. Then fi may be defined by sending x′ to


a1

...

ae

.

• Write SXi = SXi,≤t⊕SXi,>t. For each x′ ∈ Xi,≤t, degree considerations enforce

that al = 0 for each l in equation 7.3, and hence fi(SXi,≤t) = 0. Since 7.2

fails and since indγ A〈X〉 is a minimal complex, ∂i+1 maps Xi+1 into SXi,≤t.

Therefore the left square commutes.

Let U be the DG module over A〈X〉 whose underlying module structure is free

over A〈X〉\ with basis 1, u1, . . . , ue with deg(1) = −t, deg(ul) = deg(ml), and with

differential given by ∂(ul) = sl for each l. The augmentation A〈X〉 → S induces
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a quasi-isomorphism from U to U ⊗A〈X〉 S = M , and a derivation ϑ : A〈X〉 → U

satisfying ϑ(x) = 1 and ϑ(x′) ⊂ mAA〈X〉 for x′ 6= x.

The module k⊗AU maps each ul to zero and so the projection k⊗AU → k〈X〉 is

a chain map. The composition of k⊗A ϑ with the projection is a derivation satisfying

the properties required in the claim.

Corollary 7.2.4. Let R be an N-local algebra with R0 = k. If εij(R) = 0 for i 6= j

and i� 0, then εij(R) = 0 for i 6= j and all odd i ≥ 3.

Proof. By contrapositive: the theorem gives that whenever tεi (R) > 0 for some i ≥ 3,

tεn(R) > 0 for all n > i.

It is not evident how proof of theorem 7.2.3 may be modified to remove the

reference to parity in the above result. A counterexample to such a strengthened

statement is unknown to the author, but would require a different approach.

Question 7.2.5. Let R be an N-local algebra with R0 = k. If εij(R) = 0 for i 6= j

and i� 0, then must εij(R) = 0 for i 6= j and all even i ≥ 3?

7.3 Slope

We now discuss the implications theorem 7.2.3 have on the slope of k as a module

over a graded algebra R. Slope may be generally defined for any module over a

graded algebra. It measures the rate of growth of the internal degree of a minimal

free resolution of a module. More formally:
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Definition 7.3.1. Let R be a graded algebra and M be a graded R-module. The

i-th maximal shift of M is

ti(M) = sup{j | Tori(M,k)j 6= 0} − i.

The slope of M is

slopeRM = sup

{
ti(M)− t0(M)

i
| i ∈ N

}
.

As the following example demonstrates, it is the minimal slope needed so that

when line of slope slopeRM drawn on the “compressed bigraded Betti table” of M

(the table whose entries are βi,j−i(R)), all the non-zero entries lie above the line.

Example 7.3.2. Let R be an N-graded k-algebra and let a, b be a regular sequence

in R2. Then R/(a, b) is resolved by the Koszul complex R〈x, y | ∂(x) = a, ∂(y) = b〉,

and the compressed Betti table is

j-i

i
0 1 2

0 1 . .

1 . 2 .

2 . . 1

The slope of R/(a, b) over R is therefore 1.

Remark 7.3.3. The definition above and an accompanying discussion may be found in

[30]. A related invariant called rate was first defined by Backelin [11] for the shift of

the maximal ideal, and generalized and shown to be finite by Aramova, Bărcănescu,

and Herzog [1].
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Since the supremum in definition 7.3.1 is indexed over every homological degree,

its values are influenced by the initial segment {t1(M), . . . , tl(M)}. Motivated by a

question of Conca [30, p. 9.4], we define a numerical invariant which measures the

asymptotic growth of the shifts of M .

Definition 7.3.4. Let M be a graded R module over a graded algebra R. The

limslope of M is

limslopeRM = lim sup

{
ti(M)− t0(M)

i
| i ∈ N

}
.

One useful property about limslope is that it is stable after taking syzygies.

Proposition 7.3.5. Let N be a j-th syzygy of M . Then limslopeR(N) = limslope(M).

Proof. For convenience, set si(M) = ti(M) + i. We have

si(ΩjM)− i− t0(ΩjM)

i
=
si+j(M)− (i+ j)− (tj(M)− j)

i+ j

i+ j

i
.

Taking lim supi→∞ on the lefthand side yields limslopeR(N) by definition. Since

limi→∞
i+j
i

= 1 exists and is finite, we have

lim sup
i→∞

(
si+j(M)− (i+ j)− (sj(M)− j)

i+ j

i+ j

i

)

= lim sup
i→∞

(
si+j(M)− (i+ j)− (sj(M)− j)

i+ j

)
lim sup
i→∞

i+ j

i

which equals limslopeR(M) by definition.

Using deviations and theorem 7.2.3, we bound the difference between the slope

and the limslope of the residue field of an algebra:
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Theorem 7.3.6. Let R be a graded k-algebra. Then either limslopeR(k) = slopeR(k)

or the following hold:

1. There exists an odd integer l so that slopeR(k) = (tl(k)− l)/l. In other words,

the slope is attained in some degree l.

2. For any l satisfying (1), we have slopeR(k) > limslopeR(k) ≥ (tl(k)− l)/(l+ 1).

Proof. Suppose that limslopeR(k) 6= slopeR(k). Then there exists some n� 0 so that

sup
i>n

{
ti(k)− i

i

}
< sup

i≥1

{
ti(k)− i

i

}
(7.4)

and so the slope has to be attained in some homological degree j between 1 and n.

Let R〈X〉 be an acyclic closure of k. Let m = x
(e1)
1 · · ·x(en)

n be a normal Γ-

monomial with homological degree j and internal degree tj(k). Then we have

tj(k)

j
=

deg(m)

|m|
=
e1 deg(x1) + · · ·+ en deg(xn)

e1|x1|+ · · ·+ en|xn|
.

Choosing x = xl so that deg(x)−|x|
|x| is as large as possible, we must have

deg(x)− |x|
|x|

≥ tj(k)− k
j

and so equality must hold since the slope is attained at j.

If |x| is even then {x(e)}e≥1 is a sequence of elements with

deg(x(e))− |x(e)|
|x(e)|

=
deg(x)− |x|

|x|
= slopeR(k)

which contradicts eq. (7.4). Hence |x| is odd.
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By theorem 7.2.3, there exists a variable y with |y| = |x| + 1 and deg(y) ≥

deg(x) + 1. The inequality

deg(y)− |y|
|y|

≥ deg(x) + 1− |x| − 1

|x|+ 1
=

deg(x)− |x|
|x|+ 1

applied to the sequence {y(e)
e≥1} forces the inequality in item 2.

We are unsure if this result can be strengthened to show equality in all cases.

We also do not know when this result extends to calculating slopeR(S) for a D-local

homomorphism ϕ : R→ S.

Question 7.3.7. Let ϕ : R→ S be a D-local homomorphism with R0 = k and S0 = l

fields. Does limslopeR(k) = slopeR(k)? Under what conditions does limslopeR(S) =

slopeR(S)?
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